
Working with Volumetric Meshes in a Game Engine:
a Unity Prototype

Luca Pitzalis1,2, Gianmarco Cherchi1 , Riccardo Scateni1 and Lucio Davide Spano1

1University of Cagliari, Department of Mathematics and Computer Science, Italy
2Visual Computing, CRS4, Italy

Abstract
Volumetric meshes are useful assets in many different research and application fields, like physical simulations, FEM or IGA. In
the last decade, the Computer Graphics community dedicated a lot of effort in studying and developing new algorithms for the
creation, manipulation, and visualization of this family of meshes. In the meantime, Game Development became a relevant field
of application for CG practitioners entangled with AR and VR techniques. In this work, we position ourselves at the confluence
of these two broad research and development paths. We introduce a custom data structure aiming at using volumetric meshes in
Unity. To this purpose, we combine gaming techniques and interactions with typical operations of volumetric meshes. Besides
this, to make the researcher experience more realistic, we also introduce features to manipulate volumetric meshes for their
projects in an immersive environment using VR techniques. We think this feature can be useful in developing tools for 3D
Sculpting or Digital Fabrication.

CCS Concepts
• Computing methodologies → Rendering; Physical simulation; Volumetric models; Mesh geometry models; • Human-
centered computing → Interaction techniques;

1. Introduction

Meshes are the ubiquitous objects populating a game scenario.
In a typical video-game, meshes represent characters, props, and
scenes. Depending on the type of setup, we use either triangular or
quadrilateral meshes, but they represent the visible items’ skin in
any case. Game engines are becoming more and more efficient, and
the same applies to game platforms. But more complex objects and
actions can, possibly, appear in the future in the game scenario for
getting a higher level of (perceived) fidelity in games. Think about
the physics: it evolved, in the last decades, adding dramatic effects,
like fragmentation, fog, or particles. In contrast to such an evo-
lution, we represent the objects through the same kind of meshes
used thirty years ago, even if they are bigger, textured, sometimes
deformed, and more realistic. What could be a step ahead in real-
ism in games, then? The possibility to represent objects as skins
and whole volumes could improve the range of effects to include.
Object cuttable, or deformable with volume preservation could ap-
pear in the game scenario in the next future, even if not around the
corner of the commercial video games. But this will happen only if
the representations improve adding volumetric meshes to the tools
that game developers can use in a game engine.
Stemming from this idea, in this paper, we propose a proof of con-
cept to show how Unity, the most common game platform, can in-
corporate volumetric objects. In the following, we will mainly de-
scribe the definition of a simple data structure to store volumetric

meshes and implement two essential features: cutting and heating.
Based on the consideration that Unity is not only a game devel-
opment platform, but it also became a toolbox for broader use in
computer graphics, we also present another possible use of our sys-
tem as a geometry processing tool. This topic gained interest in
the research community (see, for instance, the work in [Sch20]).
We introduce an interactive three-dimensional sculpting tool that,
while the user in an immersive environment interacts with the ob-
ject, keeps track of the fabrication properties. We incorporate the
rudimental semantics of additive and subtractive fabrication in the
tool to give hints to the user on the possible outcome of the whole
process, down to the real object’s production.

2. State of the art

2.1. Volumetric Mesh Interaction

The introduction of consumer devices tracking gestures fostered the
research on interactive methods for editing 3D models using direct
manipulation methods, relying on the user’s hand movements or
tracking 6 degrees of freedom remotes. One of the most researched
metaphors for supporting such interaction is the clay modelling: the
user changes the shape and the volume of the 3D object adding or
removing material and using tools while the object is rotating on
a lathe. In this specific field, different solutions employ volumetric
meshes, for better mapping the manipulation gestures to their ef-

https://orcid.org/0000-0003-2029-1119
https://orcid.org/0000-0002-0950-7372
https://orcid.org/0000-0001-7106-0463


L. Pitzalis, G. Cherchi, R. Scateni & L. D. Spano / Working with Volumetric Meshes in a Game Engine: a Unity Prototype

fects on the object shape and volume.
For instance, Cho et al. [CBB∗14, CHB12a] focused on a high-
fidelity simulation of the clay modelling metaphor, including the
simulation of tools. But the fidelity to the metaphor also represents
the main work limitation since the spinning-wheel technique allows
for creating only symmetrical shapes. Volarevic et al. [VMM15]
propose a Kinect-based system removing such restriction and ex-
ploiting the clay modelling metaphor. Other works apply the same
metaphor using different input devices such as remotes [Kre13] or
finger tracking cameras such as the Leap Motion [PCLC17].
The paper [DCK13] introduced a different approach based on
adapting typical CAD interactions to the gesture modality. The tool
supports constructing and deforming solids through CAD tools,
which limit the gesture expressiveness to the techniques available
in 2D interaction.
Our main goal is including volumetric meshes in a game engine.
Wang et al. [WAK18] present the first attempt to include this fam-
ily of meshes in Unity, but it limited to tetrahedral meshes, without
adjacencies information.

2.2. Game Development

Given the platform we considered for developing our prototype, it’s
worth summarising the usage of volumetric meshes in videogames
implementation. The full list is available in [Wik20]. Here we re-
port some of the main examples. The real-time strategy game Com-
mand and Conquer exploits voxels for representing most of the
vehicles. Robocraft uses the same approach again for representing
vehicles, this time for modelling the loss of pieces during robot
fighting. Minecraft, differently from what it seems for its graph-
ics, uses a voxel representation only for storing the terrain, but it
exploits surface meshes for the gameplay. Worms 4: Mayhem uses
a voxel-based engine to simulate land deformation similar to the
older 2D Worms games.

2.3. HCI for Fabrication-Oriented 3D Modeling

Traditional 3D modelling approaches rely on standard mouse and
keyboard input and 2D screen output, requiring different operations
to fill the mismatch between the object and its representation. Such
limitation represents a barrier for artists and craftsman, as they usu-
ally are not able to use even the simplest 3D modelling tools (e.g.,
SketchUp).
HCI research has provided 3D gestural input metaphors for shap-
ing 3D objects, focusing on specific domains such as clay mod-
eling [CHB12b] or dress tailoring [WSMI12]. The research on
obtaining a 3D output resulted in different mixed reality sys-
tems, mostly applied to furniture design [WLK∗14] or sculpt-
ing [YZY∗17].
All these approaches exploit a strict separation between the de-
sign and the fabrication phase, iteratively repeating them until the
user gets the desired result. To limit the time and material con-
sumption involved in these iterations, different low-fidelity fabrica-
tion techniques exist in the literature (e.g. faBrickator [MMG∗14],
WirePrint [MIG∗14], Plantener [BGM∗15]).
Other solutions exploit a simple 3D preview after editing the ob-
ject through a 2D interface, for instance, CutCAD [HTL∗18]. More

recent solutions apply a compositional approach for the volume-
building based on boxes that allow the construction of closed box
structures that are possible to unfold in 2D for cutting [BSK∗19]
automatically. However, how to move from such phases separation
towards a fully interactive fabrication environment as envisioned
by Willis et al. [WXW∗10] and applying the Shneiderman’s di-
rect manipulation principles remains an open research challenge
[BM16]. Early solutions exploit the space physical sketching tools
[AUK∗15] or the coordination between the modelling tool and the
printing process [PWMG16].

3. Contribution

The main contribution of this paper is a set of assets (in the form of
C# scripts) to store, manipulate and visualize both tetrahedral and
hexahedral meshes in the Unity Game Engine. We implemented
and tested the mesh slice functionality in a VR environment (Ocu-
lus Rift and Hololens) to test the feasibility of real-time manipula-
tion of volumetric objects in videogames. Finally, we implemented
a basic 3D sculpting tool with VR interaction and real-time fabri-
cability check. We also perform a user test to validate the usability
of the implemented rudimental interaction techniques.

4. Data Structure

TTo make the Unity Game Engine compatible with the volumet-
ric meshes, we implemented three different C# scripts to represent
the tetrahedral and the hexahedral meshes. The work in [CPFS19]
widely inspires the structure of the code. In particular, we have
three main data structures (Abstractmesh, Tetmesh and Hexmesh)
organized as follow: The Abstractmesh contains all the attributes
and the methods shared between the two volumetric mesh types.
The vertices are expressed as a List of Vector3 containing three
floats coordinates for each vertex. We represent the simplices as
vertex ids, referring to the vertices list. We use the same approach
to represents the faces. Finally, we have additional lists to represent
adjacencies between the mesh elements. Tetmesh and Hexmesh are
subclasses of Abstractmesh. They implement the methods neces-
sary to extract the surface of the mesh and to render it through the
components we describe in Section 5.
Since Unity does not natively support volumetric meshes, we added
to our data structure all the methods required to make our meshes
fully compatible with the Unity Mesh component. To do so, we
extracted the surface of the volumetric mesh. If the mesh sur-
face is composed of quads, then we proceed to triangulate it. The
Unity Mesh component, in fact, can handle only triangular faces
expressed as arrays of nx3 integers.
Then the mesh is visualized by a Mesh Filter. It is also possi-
ble to apply materials to the mesh through a Mesh Renderer.

5. Usage

Unity assets are usually imported by dragging and dropping a sup-
ported file into the asset folder, or directly into the scene editor. In
our case, Unity does not support the volumetric mesh files, so we
cannot exploit the drag and drop feature.
We tried to make the import operation as straightforward as possi-
ble. To import a .mesh file, the first operation is creating a Unity



L. Pitzalis, G. Cherchi, R. Scateni & L. D. Spano / Working with Volumetric Meshes in a Game Engine: a Unity Prototype

Empty GameObject in the desired position into the scene edi-
tor. There are three fundamental components required to make im-
porting volumetric mesh possible. The first one is one of our data
structures (Tetmesh or Hexmesh), and the second one is a Mesh
Filter, which is a Unity component that takes as input a sur-
face mesh and renders it through another component called Mesh
Renderer. Once all the required components are attached to the
Empty Game Object, it is possible to specify the path of the
mesh in the apposite text field provided as a public attribute by our
data structure (see Figure 1). It is also possible to add only our data
structure as a component of a GameObject. In this case, the en-
vironment adds all the components described above.
Our data structure also supports materials. It’s possible to drag and
drop a Material in the dedicated field and, if no material is spec-
ified, then the script will use a default one.

Figure 1: Example of importing a volumetric mesh in Unity.

Other functionalities, like mesh slicing and mesh heating, can
be included by adding the corresponding scripts as components
of the GameObject. For example, we implemented the slicing
functionality we proposed in the script VolumeMeshSlicer that
presents three sliders in the editor for slicing the mesh in the three
axis-aligned directions. The slicing functionalities can be used both
in the editor, as shown in Figure 2, and in the game.

Figure 2: Slicing a mesh using the Unity inspector.

6. Basic Sculpting Tool for Fabrication

We implemented a prototype sculpting tool to test the interactive
support provided by our data structure in an interactive fabrica-
tion task (see Section 2.3). At the moment, this demo works only
on hexahedral meshes. We start from a single hexahedron mesh,
which we extrude to create quite complex volumetric shapes. With

this feature, the user can create an entire simple game environment,
from the characters to the scene objects, with volumetric properties.
Figure 3 shows n example of this class of object produced with our
demo.

Figure 3: From a single cube to a volumetric tree model.

We also tested all these functionalities in a Mixed Reality setting,
trying to give the user a simple and intuitive way to interact with
the sculpting environment. In particular, we used Hololens, but it is
possible to use a generic VR/MR Headset (i.e., Oculus Rift). In our
demo, the user can grab a portion of the mesh surface and pull it.
In this way, she can extrude the mesh, generating the inner volume
in real-time.
The extrusion pipeline consists of three main functionalities and
relative gestures. The first one is the selection of the faces we want
to extrude. The users can point the desired faces with their index
finger and select them by closing the finger to the hand. To realize
the proper extrusion, the user can hold his finger close to the hand
and pull the face with a hand movement. Before performing the
real mesh modification, the tool shows a preview of the extrusion
operation to the user.
At each step of the sculpting process (i.e., after each extrusion op-
eration), we perform a very basic fabricability test. In particular, we
perform a local manifoldness and self-intersection check to give the
user an idea of the fabricability of the resulting model at the cur-
rent time. If the fabricability test is not passed, an undo operation
on the last change is possible. Of course, we know this test is not
exhaustive for the model’s complete fabricability condition, and we
will face it in the future according to the fabricability requirements
described in [LEM∗17].

In order to assess the effectiveness of the proposed interaction,
we run a preliminary qualitative evaluation of the modelling sup-
port when used in a Mixed Reality setting. We deployed the demo
sculpting application on a Microsoft Hololens v1 [Mic19] Mixed
Reality headset. For overcoming its limited support to interactive
gestures, we paired it with a Leap Motion [Mic20] sensor for a
fine-grained hand tracking.
The test consisted of two parts. In the first one, each participant
learnt how to use the modelling features through a set of basic tasks,
consisting of applying a single application feature for obtaining a
simple table shape:

1. Increasing the mesh resolution;
2. Extruding the voxels at the corners of one hexahedron face;



L. Pitzalis, G. Cherchi, R. Scateni & L. D. Spano / Working with Volumetric Meshes in a Game Engine: a Unity Prototype

Figure 4: Modelling goals for the user test.

Figure 5: Part 1 - SMEQ [ZVD85] results for the manipulation fea-
tures evaluated in the first part of the user test. Error bars represent
the standard deviation.

3. Rotating the mesh using the grab gesture;
4. Zooming in and out the mesh using the pinch gesture;
5. Saving the result.

In the second part, we provided the users with a target model
they had to replicate, starting from a single hexahedron. The target
was a step pyramid requiring the extrusion of portions consisting
of a decreasing set of voxels. Figure 4 shows the resulting objects
for each task.

In the first part, we collected the task load through the
SMEQ [ZVD85] questionnaire for each task, consisting of a sin-
gle rating in a 0 to 150 scale. In the second part, we requested the
participants to fill the NASA TLX [HS88] questionnaire and we
collected the time spent on the task. Finally, we asked the partic-
ipants to provide qualitative ratings of the interactive features and
also open-ended comments for improving the application, which
helped us in identifying possible improvements.
Ten people participated in the evaluation, nine males and one fe-
male, aged between 22 and 28 years old. They had different in-
struction levels, ranging from high school (2), bachelor (3), master
(3) and PhD (2). All participants are familiar with 3D applications
such as videogames, but none had previous 3D modelling experi-
ence. None of them previously used Mixed Reality applications or
gestural interfaces. Only two of them used a 3D printed in the past.
All users but one completed all the tasks. We registered the only
failure in the second part. The lack of haptic feedback and some er-
rors in the hand tracking increased the number of errors during the
interaction but, in general, the participants liked the support and ex-
pressed positive opinions on the overall experience.
Figure 5 shows the detailed results for the manipulation features
evaluated in the first part of the test.

In the second part of the test, we show the participants a target
model to re-create through the application. The task took about 10
minutes to complete (x̄ = 10.3 min, s = 3.2 min). We measured the

Figure 6: Part 2 - NASA TLX [HS88] results for the modelling task
in the second part of the user test. We report the raw index value
and the six dimensions that contribute to the overall task load.

task load using the NASA TLX [HS88], for analysing the factors
that contributed to this load. The low values for the physical and
mental demands, together with the results for the frustration and
performance denote that the users were able to establish the inten-
tion, but they had some problems in executing the actions. Consid-
ering that we evaluated a preliminary prototype, this is encourag-
ing: the users can establish what to do, and they can conclude the
task, but we need to improve the interactive support.
The physical effort and the task duration indicate that we need to
carefully consider the gorilla arm problem in the gestural interac-
tion for this task: the time spent on the task is long enough for tiring
the user’s arms. Users may rest the elbows on a table, but this would
make it difficult to interact with the lower part of the model. How-
ever, the raw index value shows that the task difficulty is already
acceptable, but it is possible to improve it (x̄ = 41.38 s = 16.03 in
a 0 to 100 scale, the lower, the better).

7. Conclusion and future work

We presented work at the convergence of two fields not strictly re-
lated to each other: mesh processing and interactive environments
generation. Our goal was to demonstrate that not so much effort
is needed to incorporate hypothetically sophisticated features, like
volumetric meshes, in a game engine.

Our current proposal, as we stated in the beginning, is a proof
of concept. We merely wanted to show that mixing up knowledge
in mesh processing and game development can improve the tool-
box available in a powerful and popular environment like Unity.
This proposal is the cornerstone for a whole set of possible future
evolution. First of all, we would like the real game developers to
incorporate our rudimental tools in their games to ensure that the
enhancements we foresee are valuable. We would then like to fo-
cus on the fabrication guidance tool. It is interesting to interactively
sculpt an object in a simple yet complete and user-friendly environ-
ment like one that Unity can generate. Full control of the sculpted
object’s fabrication can be a driver for digital artists that can, at the
end of the work, obtain a real object in different materials using
additive or subtractive fabrication.



L. Pitzalis, G. Cherchi, R. Scateni & L. D. Spano / Working with Volumetric Meshes in a Game Engine: a Unity Prototype

Acknowledgement

Gianmarco Cherchi gratefully acknowledges the support
to his research by PON R&I 2014-2020 AIM1895943-1
(http://www.ponricerca. gov.it).

References
[AUK∗15] AGRAWAL H., UMAPATHI U., KOVACS R., FROHNHOFEN

J., CHEN H.-T., MUELLER S., BAUDISCH P.: Protopiper: Physi-
cally sketching room-sized objects at actual scale. UIST ’15, Associ-
ation for Computing Machinery, p. 427–436. URL: https://doi.
org/10.1145/2807442.2807505, doi:10.1145/2807442.
2807505. 2

[BGM∗15] BEYER D., GUREVICH S., MUELLER S., CHEN H.-T.,
BAUDISCH P.: Platener: Low-fidelity fabrication of 3d objects by sub-
stituting 3d print with laser-cut plates. In Proceedings of the 33rd An-
nual ACM Conference on Human Factors in Computing Systems (New
York, NY, USA, 2015), CHI ’15, Association for Computing Machinery,
p. 1799–1806. URL: https://doi.org/10.1145/2702123.
2702225, doi:10.1145/2702123.2702225. 2

[BM16] BAUDISCH P., MUELLER S.: Personal fabrication: State of the
art and future research. In Proceedings of the 2016 CHI Conference Ex-
tended Abstracts on Human Factors in Computing Systems (New York,
NY, USA, 2016), CHI EA ’16, Association for Computing Machin-
ery, p. 936–939. URL: https://doi.org/10.1145/2851581.
2856664, doi:10.1145/2851581.2856664. 2

[BSK∗19] BAUDISCH P., SILBER A., KOMMANA Y., GRUNER M.,
WALL L., REUSS K., HEILMAN L., KOVACS R., RECHLITZ D.,
ROUMEN T.: Kyub: A 3d editor for modeling sturdy laser-cut objects. In
Proceedings of the 2019 CHI Conference on Human Factors in Comput-
ing Systems (New York, NY, USA, 2019), CHI ’19, Association for Com-
puting Machinery, p. 1–12. doi:10.1145/3290605.3300796. 2

[CBB∗14] CHO S., BAEK D., BAEK S., LEE K., BANG H.: 3d volume
drawing on a potter’s wheel. IEEE Computer Graphics and Applications
34, 03 (may 2014), 50–58. doi:10.1109/MCG.2014.3. 2

[CHB12a] CHO S., HEO Y., BANG H.: Turn: A virtual pottery by
real spinning wheel. In ACM SIGGRAPH 2012 Emerging Technologies
(New York, NY, USA, 2012), SIGGRAPH ’12, Association for Comput-
ing Machinery. URL: https://doi.org/10.1145/2343456.
2343481, doi:10.1145/2343456.2343481. 2

[CHB12b] CHO S., HEO Y., BANG H.: Turn: A virtual pottery by real
spinning wheel. In ACM SIGGRAPH 2012 Emerging Technologies (New
York, NY, USA, 2012), SIGGRAPH ’12, Association for Computing
Machinery. doi:10.1145/2343456.2343481. 2

[CPFS19] CHERCHI G., PITZALIS L., FRONGIA G. L., SCATENI R.:
The Py3DViewer Project: A Python Library for fast Prototyping in Ge-
ometry Processing. In Smart Tools and Apps for Graphics - Eurograph-
ics Italian Chapter Conference (2019), The Eurographics Association.
doi:10.2312/stag.20191374. 2

[DCK13] DAVE D., CHOWRIAPPA A., KESAVADAS T.: Gesture inter-
face for 3d cad modeling using kinect. Computer-Aided Design and Ap-
plications 10, 4 (2013), 663–669. 2

[HS88] HART S. G., STAVELAND L. E.: Development of nasa-tlx (task
load index): Results of empirical and theoretical research. In Advances
in psychology, vol. 52. Elsevier, 1988, pp. 139–183. 4

[HTL∗18] HELLER F., THAR J., LEWANDOWSKI D., HARTMANN M.,
SCHOONBROOD P., STÖNNER S., VOELKER S., BORCHERS J.: Cutcad
- an open-source tool to design 3d objects in 2d. In Proceedings of the
2018 Designing Interactive Systems Conference (New York, NY, USA,
2018), DIS ’18, Association for Computing Machinery, p. 1135–1139.
URL: https://doi.org/10.1145/3196709.3196800, doi:
10.1145/3196709.3196800. 2

[Kre13] KREYLOS O.: A developer’s perspective on immersive 3d com-
puter graphics, 2013. Online, Accessed 2020-09-28. URL: http:
//doc-ok.org/?p=493. 2

[LEM∗17] LIVESU M., ELLERO S., MARTÍNEZ J., LEFEBVRE S.,
ATTENE M.: From 3d models to 3d prints: an overview of the processing
pipeline. Computer Graphics Forum 36, 2 (2017), 537–564. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/
cgf.13147, arXiv:https://onlinelibrary.wiley.com/
doi/pdf/10.1111/cgf.13147, doi:10.1111/cgf.13147.
3

[Mic19] MICROSOFT: Hololens (1st gen) hardware, 2019. Online,
Accessed 2020-09-28. URL: https://docs.microsoft.com/
en-us/hololens/hololens1-hardware. 3

[Mic20] MICHAEL BUCKWALD, DAVID HOLZ: Leap motion developer,
2020. Online, Accessed 2020-09-28. URL: https://developer.
leapmotion.com. 3

[MIG∗14] MUELLER S., IM S., GUREVICH S., TEIBRICH A., PFIS-
TERER L., GUIMBRETIÈRE F., BAUDISCH P.: Wireprint: 3d printed
previews for fast prototyping. In Proceedings of the 27th Annual
ACM Symposium on User Interface Software and Technology (New
York, NY, USA, 2014), UIST ’14, Association for Computing Machin-
ery, p. 273–280. URL: https://doi.org/10.1145/2642918.
2647359, doi:10.1145/2642918.2647359. 2

[MMG∗14] MUELLER S., MOHR T., GUENTHER K., FROHNHOFEN J.,
BAUDISCH P.: Fabrickation: Fast 3d printing of functional objects by
integrating construction kit building blocks. In CHI ’14 Extended Ab-
stracts on Human Factors in Computing Systems (New York, NY, USA,
2014), CHI EA ’14, Association for Computing Machinery, p. 187–188.
URL: https://doi.org/10.1145/2559206.2582209, doi:
10.1145/2559206.2582209. 2

[PCLC17] PARK G., CHOI H., LEE U., CHIN S.: Virtual figure model
crafting with vr hmd and leap motion. The Imaging Science Journal 65,
6 (2017), 358–370. 2

[PWMG16] PENG H., WU R., MARSCHNER S., GUIMBRETIÈRE F.:
On-the-fly print: Incremental printing while modelling. In Proceed-
ings of the 2016 CHI Conference on Human Factors in Computing Sys-
tems (New York, NY, USA, 2016), CHI ’16, Association for Comput-
ing Machinery, p. 887–896. URL: https://doi.org/10.1145/
2858036.2858106, doi:10.1145/2858036.2858106. 2

[Sch20] SCHMIDT R.: Command-line mesh processing with unreal
engine 4.26, 2020. Online, Accessed 2020-10-28. URL: http:
//www.gradientspace.com/tutorials/2020/9/21/
command-line-geometry-processing-with-unreal-engine.
1

[VMM15] VOLAREVIĆ M., MRAZOVIĆ P., MIHAJLOVIĆ Ž.: Freeform
spatial modelling using depth-sensing camera. In 2015 38th Interna-
tional Convention on Information and Communication Technology, Elec-
tronics and Microelectronics (MIPRO) (2015), IEEE, pp. 318–323. 2

[WAK18] WANG K., ADIMULAM K., KESAVADAS T.: Tetrahedral mesh
visualization in a game engine. In 2018 IEEE Conference on Virtual
Reality and 3D User Interfaces (VR) (2018), pp. 719–720. doi:10.
1109/VR.2018.8446544. 2

[Wik20] WIKIPEDIA: Voxel - computer games, 2020. Online, Ac-
cessed 2020-09-28. URL: https://en.wikipedia.org/wiki/
Voxel#Computer_games. 2

[WLK∗14] WEICHEL C., LAU M., KIM D., VILLAR N., GELLERSEN
H. W.: Mixfab: A mixed-reality environment for personal fabrica-
tion. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (New York, NY, USA, 2014), CHI ’14, Associa-
tion for Computing Machinery, p. 3855–3864. URL: https://doi.
org/10.1145/2556288.2557090, doi:10.1145/2556288.
2557090. 2

[WSMI12] WIBOWO A., SAKAMOTO D., MITANI J., IGARASHI T.:
Dressup: A 3d interface for clothing design with a physical mannequin.
In Proceedings of the Sixth International Conference on Tangible, Em-
bedded and Embodied Interaction (New York, NY, USA, 2012), TEI ’12,
Association for Computing Machinery, p. 99–102. doi:10.1145/
2148131.2148153. 2

https://doi.org/10.1145/2807442.2807505
https://doi.org/10.1145/2807442.2807505
https://doi.org/10.1145/2807442.2807505
https://doi.org/10.1145/2807442.2807505
https://doi.org/10.1145/2702123.2702225
https://doi.org/10.1145/2702123.2702225
https://doi.org/10.1145/2702123.2702225
https://doi.org/10.1145/2851581.2856664
https://doi.org/10.1145/2851581.2856664
https://doi.org/10.1145/2851581.2856664
https://doi.org/10.1145/3290605.3300796
https://doi.org/10.1109/MCG.2014.3
https://doi.org/10.1145/2343456.2343481
https://doi.org/10.1145/2343456.2343481
https://doi.org/10.1145/2343456.2343481
https://doi.org/10.1145/2343456.2343481
https://doi.org/10.2312/stag.20191374
https://doi.org/10.1145/3196709.3196800
https://doi.org/10.1145/3196709.3196800
https://doi.org/10.1145/3196709.3196800
http://doc-ok.org/?p=493
http://doc-ok.org/?p=493
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13147
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13147
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13147
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13147
https://doi.org/10.1111/cgf.13147
https://docs.microsoft.com/en-us/hololens/hololens1-hardware
https://docs.microsoft.com/en-us/hololens/hololens1-hardware
https://developer.leapmotion.com
https://developer.leapmotion.com
https://doi.org/10.1145/2642918.2647359
https://doi.org/10.1145/2642918.2647359
https://doi.org/10.1145/2642918.2647359
https://doi.org/10.1145/2559206.2582209
https://doi.org/10.1145/2559206.2582209
https://doi.org/10.1145/2559206.2582209
https://doi.org/10.1145/2858036.2858106
https://doi.org/10.1145/2858036.2858106
https://doi.org/10.1145/2858036.2858106
http://www.gradientspace.com/tutorials/2020/9/21/command-line-geometry-processing-with-unreal-engine
http://www.gradientspace.com/tutorials/2020/9/21/command-line-geometry-processing-with-unreal-engine
http://www.gradientspace.com/tutorials/2020/9/21/command-line-geometry-processing-with-unreal-engine
https://doi.org/10.1109/VR.2018.8446544
https://doi.org/10.1109/VR.2018.8446544
https://en.wikipedia.org/wiki/Voxel#Computer_games
https://en.wikipedia.org/wiki/Voxel#Computer_games
https://doi.org/10.1145/2556288.2557090
https://doi.org/10.1145/2556288.2557090
https://doi.org/10.1145/2556288.2557090
https://doi.org/10.1145/2556288.2557090
https://doi.org/10.1145/2148131.2148153
https://doi.org/10.1145/2148131.2148153


L. Pitzalis, G. Cherchi, R. Scateni & L. D. Spano / Working with Volumetric Meshes in a Game Engine: a Unity Prototype

[WXW∗10] WILLIS K. D., XU C., WU K.-J., LEVIN G., GROSS
M. D.: Interactive fabrication: New interfaces for digital fabrica-
tion. In Proceedings of the Fifth International Conference on Tan-
gible, Embedded, and Embodied Interaction (New York, NY, USA,
2010), TEI ’11, Association for Computing Machinery, p. 69–72.
URL: https://doi.org/10.1145/1935701.1935716, doi:
10.1145/1935701.1935716. 2

[YZY∗17] YUE Y.-T., ZHANG X., YANG Y., REN G., CHOI Y.-K.,
WANG W.: Wiredraw: 3d wire sculpturing guided with mixed real-
ity. In Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems (New York, NY, USA, 2017), CHI ’17, Associ-
ation for Computing Machinery, p. 3693–3704. URL: https://doi.
org/10.1145/3025453.3025792, doi:10.1145/3025453.
3025792. 2

[ZVD85] ZIJLSTRA F. R. H., VAN DOORN L.: The construction of a
scale to measure subjective effort. Delft, Netherlands 43 (1985), 124–
139. 4

https://doi.org/10.1145/1935701.1935716
https://doi.org/10.1145/1935701.1935716
https://doi.org/10.1145/1935701.1935716
https://doi.org/10.1145/3025453.3025792
https://doi.org/10.1145/3025453.3025792
https://doi.org/10.1145/3025453.3025792
https://doi.org/10.1145/3025453.3025792

