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Abstract

Polycubes are three-dimensional domains formed by connecting axis-
aligned cuboids face to face. The simplicity of their structure explains their
popularity for several computer graphics problems such as quadrilateral
and hexahedral meshing, texture mapping, etc. In this thesis, after a
summary of the state-of-the-art methods to compute polycube mappings,
we study a possible optimization of the polycube structure and two poten-
tial uses of that. We start from polycube corner alignment, to improve
the polycube-based mesh structure in terms of coarse surface and volume
block decomposition. Then, we present an automatic method to enhance
the element quality of a polycube-based hex-mesh, via a selective padding
strategy that improves the mesh quality only where it is needed. In closing,
we move from the digital world to the manufacturing one, to introduce a
method for the decomposition of digital shapes for fabrication purposes,
by using a polycube-induced partitioning. The key idea of this thesis is to
explore the polycube world from different points of view, by moving from
the purely digital world to the more concrete one of fabrication.
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Introduction v

Introduction

Generating structured volumetric and sur-
face representations of 3D objects is today
a relevant problem in several computer
graphics applications. They are input for
methods like Finite Element Methods or
IsoGeometric Analysis but also for applica-
tions like Animation, Gaming or Biomed-
ical fields. In the last years, important
progress in the meshing research commu-
nity has been made. Several methods
and algorithms have been proposed, in-
cluding the recent parameterization-based
techniques. Among these, polycube-based approaches are particularly in-
teresting. Since their introduction in 2004 [THCM04], they immediately
received the attention of different studies in several computer graphics
branches. Starting from texture mapping, a lot of research fields such as
spline fitting, morphing, remeshing, etc. have manifested their attention
for this simple axis-aligned shapes. The key reason of the spread of poly-
cubes is the bijective mapping function between the input model and its
polycube representation, that allows mapping the elements of the starting
shape on the polycube domain and vice versa. Thanks to this, it is possible
to perform a lot of manipulations on the polycube space (working with a
very simple structure) and then mapping them to the input shape. For ex-
ample, computing “well-structured” meshes via polycubes is a simple and
effective task, because a polycube always admits a trivial hex-meshing rep-
resentation that can be easily computed by gridding it into a regular lattice.

A part from from the purely digital world of three-dimensional repre-
sentations of models, another emerging field in computer graphics is the
manufacturing of digital objects. With the advent of cheap machines for
hobby manufacturing (like 3D printers), the need to manipulate digital
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vi Introduction

models (that did not come out of our screens until recently) has emerged,
in order to make them suitable for the fabrication process. The inevitable
question is: can polycubes be useful in this process too?

The general idea of this thesis is to analyze the possibility to use poly-
cubes in different fields, in particular for the generation of well-structured
meshes and the manipulation of 3D models for the manufacturing process.
This manuscript is organized as follows:

Chapter 1 introduces polycubes and the concepts behind them. After
an extensive description of their structure and features, a brief recap of
the principal polycubization methods is presented in Section 1.2. Then,
in Chapter 2, the traditional meshing pipeline via polycube gridding is
presented and discussed.

Chapter 3 presents an approach for the polycube structure optimization,
in order to produce coarse and structured quadrilateral and hexahedral
polycube-based meshes. One of the key ingredients to provide coarse
block structures is to achieve a good alignment between the mesh sin-
gularities (i.e., the corners of each block of the polycube). In the work
presented in this chapter, the polycube-based meshing pipeline is improved
by introducing a new step to produce both surface and volumetric coarse
block-structured meshes of general shapes. The main goal is to optimize
the positions of the polycube corners to produce base complexes that
are as coarse as possible. The new locations of the polycube corners
are re-mapped on an integer grid and then, by using integer numerical
programming to reach the optimal, the singularity misalignment problem
is solved directly in polycube space. The proposed corner optimization
strategy is efficient and requires a negligible extra running time for the
meshing pipeline. The obtained optimized polycubes produce coarser
block-structured surface and volumetric meshes if compared to previous
approaches. They also induce higher quality hexahedral meshes that better
suit for spline fitting because they reduce the number of splines necessary
to cover the domain, thus improving both the efficiency and the overall
level of smoothness throughout the volume.

The described polycube simplification method has been developed in col-
laboration with Riccardo Scateni (University of Cagliari) and Marco Livesu
(CNR-IMATI Genoa). This work has been published in the article “Poly-
cube Simplification for Coarse Layouts of Surfaces and Volumes” [CLS16],
in the Computer Graphic Forum journal, and it has been presented during
the SGP 2016 conference in Berlin (Germany).
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In Chapter 4, the quality of polycube-based hexahedral meshes is
analyzed and improved. Hex-meshes generated from polycube mapping
often exhibit a low number of singularities, but also low quality elements
located near the surface. It is thus necessary to improve the overall
mesh quality, in terms of the minimum Scaled Jacobian (MSJ) or average
Scaled Jacobian (ASJ). A quality improvement may be obtained via the
global padding (or pillowing) operation, which pushes the singularities
inside the volume by adding an extra layer of hexahedra on the entire
domain boundary. Such global padding suffers from a significant increase of
complexity, with unnecessary hexahedra added. In addition, the quality of
elements near the boundary may decrease. For this reason, in this chapter
a novel optimization method for polycube based hex-meshes is presented.
It inserts sheets of hexahedra to perform a “selective padding” where it is
most needed, in order to improve the mesh quality. A sheet can pad part
of the domain boundary, traverse the domain and form singularities. The
proposed global formulation, based on solving a binary problem, allows to
control the balance among quality improvement, increase of complexity and
number of singularities. A series of experiments shows that this approach
increases the MSJ value and preserves (or even improves) the ASJ, while
adding fewer hexahedra than global padding.

The described selective padding method has been studied and devel-
oped during my period spent in the Titane team at the INRIA - Sophia
Antipolis Mediterranée (France). This was done in collaboration with
Pierre Alliez (INRIA), Riccardo Scateni (University of Cagliari), David
Bommes (RWTH Aachen University / Bern University), and with the pre-
cious help of Max Lyon (RWTH Aachen University). This work has been
published in the article “Selective Padding for Polycube-based Hexahedral
Meshing” [CAS∗19] in the Computer Graphic Forum journal.

Then, passing from the digital world to the manufacturing one, in
Chapter 5 the digital fabrication is introduced. This chapter shows a brief
recap of the main fabrication technologies (additive and subtractive) and
related limitations on shape and dimension of the objects to produce.

In Chapter 6, a novel algorithm based on the polycube representation of
the original shape is proposed, with the aim to decompose any model into
smaller parts, each simpler to fabricate. The input shape is mapped to a
polycube and, then, it is split to take advantage of the polycube partitioning.
In this way, a partition of the model is quite easily obtained. This chapter
also studies and analyzes the pros and cons of this partitioning scheme for
fabrication, when using both the additive and subtractive pipelines. The
proposed partitioning scheme is computationally light, and it produces
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high-grade results, especially when applied to models that can be mapped
to polycubes with a high compactness value.

This work has been developed in collaboration with Riccardo Scateni
(University of Cagliari), Alessandro Muntoni (CNR-ISTI Pisa), and with
the precious help of two master students. Preliminary results have
been published in the article “Polycube-based Decomposition for Fab-
rication” [FCS17], in the proceedings of STAG 2017 and presented during
the STAG 2017 conference in Catania (Italy). A second article about this
work, entitled “Fabrication Oriented Shape Decomposition Using Polycube
Mapping” [FCM∗18], with new important features and new interesting
results, has been published in the Computer & Graphics journal.

Finally, Chapter 7 presents the final considerations about the results
obtained and discussed in the works presented in this thesis.
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Background
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Chapter 1

Polycubes

The Parameterization process is always been an essential goal for the
computer graphics. The idea of mapping a surface describing a shape into
another surface with the same topology (parameter domain) is relevant for
a lot of applications. Bijections between general shapes and orthogonal
polyhedra, orPolyCubes, have been introduced by Tarini et al. [THCM04]
in 2004 as a smarter means for the seamless texture mapping generation,
and they have received growing attention from the scientific community
ever since.

Figure 1.1: An example of polycube from [THCM04].

1.1 Structure and properties

The structure of a polycube is characterized by three essential proper-
ties: all axis-aligned edges, only 90◦ angles between adjacent edges, and
always flat facets. These features make the polycube manipulation simple
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4 Polycubes

and efficient, and for this reason they are very useful in many graphics
applications. Indeed, given a function f : S → P that maps a generic
shape S into a polycube P, it is easier to perform analysis, processing
and different kind of manipulations in the simple structure of S (all axis
aligned and with a limited number of vertices) and then use the bijective
reverse mapping function f−1 to reflect them on the original shape.

The simplicity of polycubes structure explains their popularity for
several computer graphics fields. A polycube always admits a trivial
hex-meshing that can be simply computed by fitting it into a regu-
lar lattice. Following the parameterization, such grid can, therefore,
be mapped into the input shape, generating an hex-mesh version of it
(e.g., [HXH10, GSZ11, YZWL14, HJS∗14]). Because of their rectangu-
lar structure, polycubes can be easily decomposed into a set of regu-
lar structures that facilitate the tensor-product surface definition. For
this reason, they received great attention from the spline fitting world
(e.g., [WJH∗08,LLWQ10,WLL∗12,LLWQ13,WZLH13]). Also because of
their structures, they can be used to efficiently pack textures into rectan-
gular pictures, in order to produce texture mappings without cuts (e.g.,
[THCM04,CL∗10]). Furthermore, the singularity graph induced by poly-
cube corners and edges can be used to easily compute a surface quad-layout
and to produce semi-regular quadrangular meshes (e.g., [CLS16,HJS∗14]).
Other polycubes employments can be listed, for instance morphing, in
which polycubes are used as a common base domain to parameterize similar
shapes (e.g., [FJFS05]), solid modeling and reconstruction (e.g. [WHL∗08]),
or fabrication-oriented decompositions (e.g., [CZL∗15,FCS17,FCM∗18]).

The quality of a polycube is evaluated by considering two important
factors: the distortion induced by the mapping and the number of corners
(which will become singularities in potentially resulting splines or polycube-
based quadrilateral/hexahedral meshes). Notice that not only the number
of singularities is essential, but also their position and valence. In addition
to these, during the process of polycube construction, two other crucial
properties must be taken into account: the compactness of the polycube
structure and the fidelity (independent to the global rotation) to the input
model.

Polycubes can be intended as a collection of connected cuboids, glued
face to face, approximating a shape. Therefore, on the one hand, the
compactness measure indicates the number of cuboids and the consequent
number of singularities, influencing the quality of the final mapping. On
the other hand, the fidelity, usually expressed as a metric, measures the
difference in orientation between the original normals of surface elements
in the input shape and the corresponding ones in the polycube space.
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Figure 1.2: Polycubes of the same model computed with different com-
pactness values. Image courtesy of [LVS∗13].

1.2 Construct polycube maps

The construction of polycubes is certainly not a trivial task. Three main
steps usually characterize it: the segmentation of the original shape,
followed by the flattening of the estimated patches and the final mapping
of the input elements into the polycube structure. In the segmentation
step, the surface of the input model is labeled, usually considering the
initial normal of their elements and then post-processed to obtain a surface
subdivision satisfying the following properties:

• each surface portion has at least four adjacent portions;

• adjacent portions cannot have opposite labels;

• once individuated the four portion corners, the valence of every one
of them must always be three.

Once individuated the surface portions, they need to be flattened to ob-
tain the final polycube structure and perform the final mapping process.
In their first appearance in [THCM04], polycubes where built by hand.
Shortly after, several approaches were introduced to automate the genera-
tion. The first attempts to automatically generate polycube maps were not
sufficiently robust to process complex shapes and tended to produce either
overly coarse (e.g., [LJFW08]) or overly complex (e.g., [HWFQ09,GSZ11])
polycubes, with the former suffering from high distortion and the latter
producing unnecessary corners. Nowadays, the polycubes computation
is an enough mature technology. Indeed, the most recent algorithms can
process complex shapes and consistently provide polycube maps with both
low distortion and low corners count [LVS∗13,HJS∗14].

Below, brief traces of the most important state-of-the-art methods for
the polycubes computation are reported, from the first approaches to the
more advanced and modern ones.
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6 Polycubes

User-controllable polycube map for manifold spline con-

struction

In 2008, Wang at al. introduced a framework for the user-controllable
polycubes generation [WJH∗08]. The produced polycubes are ideal para-
metric domains for constructing spline surfaces. In the first step of the
generation pipeline, the users can set the positions and the curvatures of
the polycube corners on the input surface. Then, the Riemannian metric
of the surface is deformed, such that all the corners have a prescribed
Gaussian curvature, and other points are on a flat plane. In the next step,
the surface corners are connected by straight lines, in order to partition
the surface into a collection of planar quadrilaterals (see Figure 1.3). Each
quadrilateral is turned into a planar rectangle by setting the corner angles
to π/2 and running the Ricci flow. Finally, all the planar rectangles are
glued together to form the final polycube.

Figure 1.3: Spline fitting (from [WJH∗08]): user-marked corner points
and geodesics between corners, the resulting polycube and the spline fitting
result.

Automatic polycube-maps

Also in 2008, Lin et al. proposed the first method to compute surface
polycube-maps automatically [LJFW08]. The method is based on three
main steps. In the first one, the input surface is segmented in patches
corresponding to relevant features of the model, with the help of a Reeb
graph. For each feature-region obtained by the first segmentation step, an
appropriate basic polycube primitive is built (cube, L-shape, O-shape, U -
shape). Then, each region is subdivided into sub-patches which are assigned
to the facets of the basic primitives. In the last step the parameterization
is performed. The vertices of every patch of a region are mapped into the
corresponding facet of the polycube, by using the mean value coordinates
methods. Finally, an iterative optimization step is performed to improve
the obtained result. A recap of the pipeline is shown in Figure 1.4.
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Figure 1.4: Pipeline recap (from [LJFW08]): the input model, the Reeb
graph based features segmentation, the polycube approximation and the
final polycube.

A divide-and-conquer approach for automatic

polycube map construction

In 2009, He et al. presented a divide-and-conquer algorithm for the
automatic construction of polycubes [HWFQ09]. The input model is
segmented into a set of genus-0 shapes by using a harmonic function f .
Using the critical points of f , the model surface is sliced with horizontal
cutting planes (a user-defined parameter decides the maximum distance
between two adjacent cutting planes). Then, the polycube is constructed by
extruding all the model slices into axis-aligned polygons (see Figure 1.5).
After an iterative set of slicing for both the model and the obtained
polycube, an intrinsic mapping between the original surface and the final
polycube is computed. This method produces very low distortion polycube
mappings but with a high number of singularities in the final base-complex.

Figure 1.5: Divide-and-conquer (from [HWFQ09]): the sliced input model,
the polycube extraction via polygon extrusion, and the final polycube.

All-hex mesh generation via volumetric polycube de-

formation

In 2011, Gregson et al. proposed the first method to compute volumetric
polycube for general shapes, with the aim to produce high-quality all-
hex-meshes [GSZ11]. Starting from a volumetric input tet-mesh, the

Gianmarco Cherchi Polycube Optimization and Applications



8 Polycubes

normals of triangles in the surface are gradually aligned with one of
the six global axes, preserving as much as possible the original shape
and propagating the surface deformation to the interior elements. After
iterations of deformation steps, when the model is sufficiently axis-aligned,
the polycube structure is determined and, under additional positional
constraints, the polycube facets are forced to be planar according to the
appropriate axis (see Figure 1.6). The computed polycube is now ready
to be gridded and used for the hex-meshing step. Polycubes computed
by this method are able to capture the major features of complex models,
including off-axis and sharp features of CAD models and intricate details
of smooth shapes.

Figure 1.6: Pipeline recap (from [GSZ11]): from the original model to
the polycube, after the deformation iterations.

Figure 1.7: Polycube construction via voxelization (from [WYZ∗11]).

A topology-preserving optimization algorithm for

polycube mapping

Also in 2011, Wan et al. introduced a method to compute and optimize
the polycube mapping [WYZ∗11]. Starting from a coarse voxelization
of the input shape (see Figure 1.7), each voxel is marked as inside or
outside. All the inner facets are removed, and the interior cells are merged
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to the final polycube. The initial polycube mapping is computed via
discrete harmonic parameterization. In the following step, the polycube
is optimized, by scaling its sub-patches, in order to minimize a mapping
energy, but preserving the polycube structure. Finally, without changing
the polycube topology, the polycube surface mapping is optimized by
searching the optimal corner position to minimize a distortion energy.
The proposed optimization is suitable for polycube computed via different
methods. Polycubes produced with this method has a low number of cubes
and singularities if compared to the previous approaches.

Polycut: monotone graph-cuts for polycube base com-

plex construction

In 2013, Livesu et al. proposed a graph-cut based approach for the
polycube computation [LVS∗13]. The elements of the input surface are
labeled considering their normal. The labeling is then improved with the
solution of a multi-label graph-cut problem, taking care about a trade-off
between fidelity to the model and compactness of the polycube structure.
Then, an iteratively hill-climbing optimization is applied to guarantee
the monotonicity of every chart boundaries (see Figure1.8). Once the
segmentation is completed, the axis orientation for each chart is computed
through a combination of mesh deformation and distortion minimization.
The polycube structure is defined and the parameterization is computed.
The strong point of this work, compared to the previous ones, is the flexible
control of the trade-off between the fidelity and compactness features.

Figure 1.8: Multi-labeling (from [LVS∗13]): the starting labeling, the
optimized labeling and the final polycube structure.

ℓ1-based construction of polycube maps from complex

shapes

In 2014, Huang et al. presented the first orientation-independent algorithm
for polycubes computation [HJS∗14]. An input triangle mesh is converted
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into a volumetric tetrahedral mesh. Such mesh is then deformed through an
iterative constrained minimization of a ℓ1-norm based energy containing
terms to enforce the axis alignment of the surface mesh normals. At
the same time, an as-rigid-as-possible volumetric distortion energy is
solved to regularize the distortion. The best orientation of the model is
found by adding the solution of an optimal global rotation matrix to the
minimization process, to find the best orientation. Furthermore, the user
can control parameters like compactness, flat regions and sharp edges.
User-guided control over the resulting polycube map is a key point to
increase design flexibility. In Figure 1.9, a collection of results obtained
with this method is shown.

Figure 1.9: A gallery of results from [HJS∗14]: polycubes and extracted
hex-meshes.

Figure 1.10: Improving chart boundary monotonicity via centroidal
Vornoi tessellation (from [HZ16]).

Centroidal Voronoi tessellation based polycube con-

struction for adaptive all-hexahedral mesh generation

In 2016, Hu et al. proposed an automatic approach to compute polycubes,
based on a centroidal Voronoi tessellation [HZ16]. A smooth input triangle
mesh is segmented into six clusters according to triangles normal. The
polycube structure is then computed by forcing all the corners of each
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segment with hard planarity constraints in the corresponding principal
axis. Then, a one-to-one mapping between the input model and the
polycube is computed. The core of this approach is a new harmonic
boundary-enhanced centroidal Voronoi tessellation approach that includes
neighboring local information in its energy function. It used to improve the
starting segmentation in order to reduce non-monotone chart boundaries,
as it is shown in Figure 1.10.

All-hex meshing using closed-form induced polycube

Also in 2016, Fang et al. introduced a new frame-field based approach to
compute volumetric polycubes [FXBH16]. The input tetrahedral mesh is
cut along a subset of its surface triangles, according to a Reeb graph-based
method. In the following step, starting from an initial frame field constant
on each tetrahedron, the frame field transitions at the cuts is allowed
by optimizing a boundary-aligned smooth cross-frame field with no inner
singularities. The resultant frame field and the transitions on cuts are
used to deform the cut mesh into a polycube-like shape. Eventually, the
final axis-aligned polycube structure is obtained by applying an extension
of the ℓ1-formulation explained in [HJS∗14]. This method is able to reduce
unnecessary stairs, corners, and preserve the mesh features more accurately
than the previous ones. A recap of the described pipeline is shown in
Figure 1.11.

Figure 1.11: Pipeline recap (from [FXBH16]): the input mesh, the cut
faces, the computed frame field, the deformed cut mesh and the final
polycube.

Efficient volumetric polycube-map construction

Again in 2016, Fu et al. proposed a foldover-free and low-distortion method
to compute volumetric polycubes [FBL16]. A starting surface mesh is
tetrahedralized and analyzed to locate inner edges and facets that, in
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the final mapping, could cause degenerate elements. The input model is
deformed so that its surface facets are aligned to the projected Gaussian-
smoothed normals. The surface is then segmented with already existing
approaches, like those of [GSZ11] or [LVS∗13], and a check of the existence
of a valid polycube topology is carried out. If it exists, a flattening
method to force every chart of the segmentation to be axis-aligned is
employed. If not, a normal-alignment mesh deformation scheme, based
on the minimization of an ad-hoc normal-alignment energy, is applied to
solve the segmentation issues. Compared with the previous approaches,
this method is at least one order of magnitude faster and it has better
mapping qualities. In Figure 1.12, a collection of polycubes obtained with
this approach is shown.

Figure 1.12: A gallery of results from [FBL16]: the input models and
the computed polycubes.

Figure 1.13: Pipeline recap (from [HZL17]): the segmentation using the
first step, the skeleton-based segmentation and the final polycube.

Surface segmentation for polycube construction based

on generalized centroidal Voronoi tessellation.

In 2017, Hu et al. introduced a two-step surface segmentation strategy for
polycube construction, through generalized centroidal Voronoi tessellation
[HZL17]. Two steps to segment an input surface model are presented.
The first one is a new eigenfunction-based centroidal Voronoi tessellation
method for the boundary segmentation through the secondary Laplace
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operator eigenfunctions, that aims to remove unsmoothed boundaries, over-
segmentation errors, and noise effect. The second one is a skeleton-based
centroidal Voronoi tessellation algorithm that generalizes the harmonic
boundary-enhanced centroidal Voronoi tessellation of the previous step
through the introduction of local coordinates to define and update the
generators flexibly in the normal space. The result of this step is the drop
of unnecessary surface singularities and the production of better results for
objects with slim cylindrical components. A pipeline recap of this method
is shown in Figure 1.13.

Robust edge-preserving surface mesh polycube defor-

mation.

In 2018, Zhao et al. proposed the most recent method to compute polycubes
starting from bounded or unbounded surface meshes [ZLL∗18]. In the first
step, the input model is segmented by following the approach proposed
in [FBL16]. In the second step, the polycube topology is extracted through
a rotation of all triangles to their corresponding target normal directions.
The core of this work is the last step in which the polycube geometry
is fixed, in order to keep as low as possible the mapping distortion, the
number of singularities, charts and corners. All these results are obtained
via an extended and iterative Poisson system which reconstructs the
deformed polycube mesh in order to satisfy the facet normals assigned
in the previous step. This method outperforms previous ones in terms of
speed, robustness, simplicity, diversity, and quality. A set of polycubes
extracted whit this algorithm is presented in Figure 1.14.

Figure 1.14: A gallery of results from [ZLL∗18]: the input models and
the computed polycubes.
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Chapter 2

Polycube-based meshes

Representing digital objects with structured meshes that embed a coarse
block decomposition is a relevant problem in several applications like Com-
puter Animation, FEM (Finite Element Methods), IGA (IsoGeometric
Analysis), CAD (Computer Aided Desig), Game Development, Medical
fields, etc. Quadrilateral and hexahedral meshes are usually preferred
due to their ability to keep a lower resolution and due to their numerical
properties. They are also useful because they can be efficiently stored in
specialized and efficient data structures.

For the surface case, a block-structured
mesh often comes in the form of a quadri-
lateral mesh obtained by gluing side to side
a set of quadrilateral patches (or blocks) in
a conforming way [BLP∗13]. Each patch is
a two-dimensional array of quads. Depend-
ing on the application field, these meshes
are called semi-regular meshes or multi-block
grids, whereas the graph having as nodes the
patches corners and as arcs their edges is
usually referred to as coarse quad-layout (see
the inset on the right). A variety of methods for the automatic com-
putation of coarse block-structured meshes have been proposed in the
literature [BLK11,TPP∗11]. However, most of these methods are either
too demanding from a computational point of view [BCE∗13,CBK12] or
focus on a specific class of shapes, and do not scale well on general mod-
els [ULP∗15]. Another research field deals with the generation of user inter-
faces for the manual construction of quad-meshes and quad-layouts. These
methods can produce extremely high-quality layouts [MTP∗15,CK14,TP-

Gianmarco Cherchi Polycube Optimization and Applications



18 Polycube-based meshes

SHSH13], but, in order to achieve the maximum result, they need to be
controlled by an experienced user. The concepts of structured mesh and
block decomposition can be easily extended to the volumetric case.

In [GMD∗16], a sweeping method
that subdivides the volume enclosed by
a triangular mesh into a set of cuboids
is proposed (see inset on the left, image
courtesy of [GMD∗16]). This method
can produce extremely coarse layouts,
sometimes at the expense of a major
deviation from the target shape. It also
requires some manual intervention to
set up the harmonic field that guides
the meshing process. In [GDC15], Gao

et al. showed that by coarsening the singularity structure of a given
hexahedral mesh, the quality of the mesh elements can be improved
without affecting the deviation from the target shape.

In the literature, several approaches with the aim to generate coarse
volumes has been proposed. Skeleton-based approaches (e.g., [LMPS16])
use tubular structures computed from the model skeleton. These method
produces good results but they suitable just for shapes that admit a
skeleton representation. Grid-based methods (e.g., [LJLJ15]), the most
used in the industry, subdivide the volume using regular grids or octrees in
order to compute intersections between hexahedra and the surface of the
model. These methods are simple, and they work with any type of meshes,
but they produce too high-resolution meshes with worst quality elements
near the boundary. Furthermore, these methods are not invariant to
rotation. Expanding approaches (e.g., [TBM96]) generate meshes starting
from the surface and moving inwards. These approaches produce meshes
with a low quality inside the volume.

Another important class of methods for the creation of hexahedral
meshes is the one of the Parameterisation-based methods. The input
volume is mapped into another parametric space where the final mesh
connectivity is generated. With the polycubes spread, new approaches
for the meshing have been proposed [GSZ11,LVS∗13]. The added value
of these approaches is clear: reasoning with a simple structure, together
with a mapping function with the original shape, yields several advantages
concerning efficiency and simplicity of implementation, as a polycube can
be trivially mesh with a regular grid.
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2.1 The polycube-based meshing pipeline

Computing quadrilateral or hexahedral meshes via polycube has the ad-
vantage to work with a simple structure, bounded by axis-aligned planes,
instead of complex models. The state-of-the-art meshing pipeline based
on polycube mappings takes advantages of a bijective mapping function
f : S → P that maps each vertex of the input shape S into a vertex of the
polycube space P, and vice versa. The connectivity of the final regular
mesh is computed in the polycube space and then the inverse function
f−1 is used to transfer it to the input space. The set of connected cuboids
composing the polycube structure is fitted into a regular and uniform
lattice L of the desired resolution. For each vertex vi of the lattice L, the
polycube elements in which vi lies must be individuated. In particular, if
surface meshing is required, for each vi ∈ L a triangle ti ∈ P is required,
while for volumetric meshing a tetrahedron Ti ∈ P is needed. Once the
belonging element is found, the vi vertex is expressed via barycentric co-
ordinates ω0, ω1, ω2 and potentially ω3, respect to the considered element
(ti or Ti) vertices. Considering the belonging element ti, and using the
aforementioned f−1 function, the equivalent element t

′

i in the input model

is found. Let A,B,C (end potentially D) the vertices of the t
′

i element, the

new vi position is computed as v
′

i = ω0 ·A+ω1 ·B+ω2 ·C (using the D term
in the same way if a volumetric mapping is required). The connectivity of
the new mesh is the same as the lattice in which the polycube has been
gridded, while its geometry is computed with the formula mentioned above.
Notice that the resolution of the lattice corresponds to the resolution of
the final mesh. A recap of the polycube-based meshing pipeline is shown
in Figure 2.1.

Figure 2.1: The polycube-based meshing pipeline: the input unstructured
model (a), its polycube (b), the policube gridded into a uniform lattice (c),
and the final structured quad/hex-mesh (d).

The structure of the final mesh is therefore defined by the shape of the
used polycube. Indeed, the compactness term introduced in Section 1.1 is
essential in this pipeline. Moreover, the corners of the polycube become
singularities in the mesh and chains of edges connecting the pairs of corners
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produce the block-decomposition in hex-meshes (or base complex [GDC15])
and the quad-layout in quad-meshes.

For surface meshes, the final structure is extraordinarily regular and
composed of quads very close to a perfect square, except for areas in prox-
imity of singular vertices (the polycube corners). Notice that, simplifying
the block-decomposition in the polycube means to simplify the structure of
the final mesh. For this reason, in Chapter 3, a new method to simplify the
polycube structure is presented, in order to produce as coarse as possible
base complexes for both surfaces and volumes.

For volumetric meshes, the quality of the interior hexahedra is really
high, close to the one of a perfect cube. It is not possible to say the same
for hexahedra in the proximity of the mesh boundary. In these areas,
the distortion is very high, and a post-processing operation is required.
The padding operation extrudes the surface quads by adding a new layer
of hexahedra all over the mesh. In this way, the valence of the singular
vertices and edges in the mesh boundary is increased, and the distortion
is subdivided in more elements making lower the per-element one. The
problem of this operation is that it is performed globally on the hex-mesh
boundary, including areas where it is not needed. For this reason, in
Chapter 4, a new method to perform selective padding on polycube-based
hex-meshes is presented.
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Chapter 3

Polycube simplification

for coarse layouts of

surfaces and volumes

As Section 2.1 shows, a cuboid can be trivially turned into a structured
mesh by gridding it. The polycube shape defines the resulting mesh
structure: polycube corners become singularities in the mesh, and chains
of edges connecting pairs of corners induce a coarse block-decomposition
of the domain. In a sense, the base-complex of a mesh M can be thought
of as the coarsest mesh M′ having exactly the same structure of M. In
the polycube case, the base-complex is the coarsest mesh that can be
generated from a given polycube. Notice that the number of elements in
the base-complex does not depend on the number of polycube corners.
Depending on how well corners align (or misalign) to each other different
base-complexes can be produced (Figure 3.1).

3.1 The singularity misalignment problem

Having a good alignment between the singular vertices of a mesh is a
key ingredient in a number of applications. The singularity misalignment
problem has been subject of extensive research in recent years, both for
surfaces and volumes [MPKZ10,BLP∗13,AFTR15,GDC15,RRP15,VS17,
PPM∗16].

In hexahedral meshing, overly dense base-complexes tend to contain
badly shaped cuboids that, when subdivided for the generation of the
final hex-mesh, produce poor quality meshes with tiny chances of fur-
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Figure 3.1: This example shows how, with a few tiny adjustments on the
position of the polycube corners, the number of volumetric domains can be
reduced from 276 to 111 and the number of surface domains from 168 to
78.

ther optimization. Coarse base-complexes with well aligned singularities
contain better shaped cuboids, therefore tend to produce higher quality
hexahedral meshes [GDC15]. Furthermore, coarse base-complexes enable
lower resolution meshing, with consequent benefits for applications both
in terms of memory requirements and performance speedup.

In higher order-meshing [LZLW15,WZLH13, LLWQ13,WHL∗08], a
spline basis is fit into each cuboid of the base-complex, with the resulting
representation being C2 continuous within each cuboid and only C0 at the
boundaries between adjacent cuboids.

Coarse base-complexes minimize the extent of the C0 region, thus
providing a higher smoothness throughout the whole domain, enabling
both more accurate and more efficient simulations for applications like
Isogeometric Analysis (IGA) [HCB05].

Despite the importance that singularity alignment covers for the afore-
mentioned applications, the most of previous methods for polycube com-
putation do not consider this aspect, thus generating sub-optimal base-
complexes with far too many cuboids. Given a polycube map, previous
methods generate the connectivity of the desired structured mesh by grid-
ding the polycube with an integer lattice. To keep the map bijective,
the corners of the polycube must be at integer locations. To ensure this
property, a naive snapping is usually performed, rounding each corner to
its closest integer location [GSZ11]. Prior to gridding, the polycube is
scaled by a factor s in order to control the mesh resolution. Firstly, the
naive snapping currently used in state-of-the-art approaches can introduce
topological inconsistencies in the polycube structure.

There are many pathological configurations possible. For example, two
disjoint corners c and c′ may round to the same integer location (Figure 3.2,
left); or a corner c may be projected on a polycube facet f if the distance
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d(c, f) ≤ 0.5 (Figure 3.2, right).

Secondly, the scaling factor s not only controls the mesh resolution
but also has a non-intuitive, hard to control, effect on the mesh structure.
In fact, small scaling factors will produce a better singularity alignment
because polycube corners will be more likely to round to the same integer
iso-lines. Conversely, big scaling factors will produce worse singularity
alignments (and worse coarse layouts) because corners will be more likely
to round to different integer iso-lines. In other words, the very same
polycube may produce structurally different meshes depending on the
sampling density (Figure 3.3).

Figure 3.2: Problems in trivially snapping the polycube corners. Left:
two corners (red and green) map to the same integer location, generating
a non-manifold vertex (red/green). Right: two vertices snap to the closest
iso-line, generating an overlap with another portion of the polycube. In the
method proposed in the following sections, explicit constraints are used to
avoid such cases.

Figure 3.3: Generation of structurally different meshes depending from
different density of the lattice used to sample the polycube. The poly-
cube simplification proposed in the following sections consistently produces
meshes with equivalent structure, regardless the density of the sampling.
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Figure 3.4: A brief recap of the various stages of the remeshing pipeline:
starting from a triangle or tetrahedral mesh (a), the polycube layout is
generated (b), the base complex structure is simplified with the proposed
method (c), and, finally, a quad or an hexahedral mesh is generated (d).

3.2 Overview

This Section describe a novel polycube simplification strategy. This is
the optimization step of the pipeline as described in Figure 3.4. The
blocks of a base-complex are glued face-by-face, so each block separation
(i.e., a face shared between two adjacent blocks) defines a separation
plane that propagates throughout the whole complex. Therefore, keep-
ing the faces on a limited set of planes reduces the overall number of blocks.

Aligning the block faces on the smallest
possible set of planes in each direction,
allows producing base-complexes with
the lowest possible number of blocks.
In the example aside, the initial base
complex has 26 surface patches and 33
volumetric domains (included the inner
padding). Simply by aligning two faces,

it is possible to reduce to 18 surface patches and 22 volumetric domains.

For ease of formulation and implementation, the problem of aligning
faces is reduced to the problem of aligning corners. Whenever the position
of a corner changes, the position of all the incident edges and faces is
coherently updated so as to preserve the axis aligned structure of the
polycube. A set of explicit constraints, detailed in Section 3.4.1, allows
achieving this result. During the simplification it is possible, therefore,
focus only on the relations between polycube corners.

The core of the proposed simplification strategy is a concise iterative
method: at each iteration a set of pairs of corners to align is identified
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(see Section 3.3). Then, by solving an integer numerical program, they
are aligned in the integer lattice (Section 3.4). The alignment process
is cumulative, meaning that at each iteration all the corner alignments
produced at the previous iterations are preserved. This ensures that the
number of aligned pairs grows monotonically. The algorithm converges
when no further alignments are possible. Since the set of possible corner
pairs is finite, convergence is guaranteed.

Using an iterative method is motivated by observing two things: (i)
a corner may want to align with many other corners, so it needs to be
paired more than once; (ii) not all the alignments can be discovered right
away. With an empirical study, it can be observed that iteratively aligning
corners and looking for new pairs produces coarser base-complexes than
trying to align all the corner pairs in a single global solve.

The few lines of pseudo-code in Algorithm 1 summarize the main steps
the proposed method, starting from an input polycube (either computed
with off-the-shelf algorithms or manually crafted). Both surface and
volumetric polycubes, that may come in the form of either a tri-mesh
or a tet-mesh, are supported. In the first step, the polycube structure
is extracted (i.e., the set of corners and their connectivity). The second
step is the iterative alignment, representing the core of the method (see
Sections 3.3 and 3.4). At the end of the alignment, each corner in the
polycube has new (integer) coordinates. In the final step the input polycube
is morphed into its new, optimized, structure (see Section 3.5). The result
is a simplified polycube embedding a coarse base-complex that can be
used for surface and volumetric meshing, or for spline fitting.

Procedure Polycube Simplification

input : a polycube P
output : a simplified polycube P ′

repeat
Compute corner pairs (Section 3.3)
Align corner pairs (Section 3.4)

until convergence;
Morph P onto the simplified polycube structure (Section 3.5)
return P

Algorithm 1: The simplification algorithm in a nutshell. An iteratively
interleave corner pairing and alignment is performed until convergence
(i.e. until no further alignment can be performed).55
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3.3 Corner pairing

This section describes how to compute A = {Ax, Ay, Az}, the sets of
corner pairs to align along x, y and z respectively. A heuristic based on the
three-dimensional Voronoi diagram of the polycbue corners is employed to
find pairs of neighbor corners. Specifically, the dual graph of the Voronoi
partitioning is used as the adjacency graph, labeling corners belonging to
adjacent cells as neighbours. Figure 3.5 shows a simple 2D example of how
the Voronoi diagram is used to pair non-adjacent corners.

Once the complete list of neighbor
pairs is found, it is possible to se-
lect, among them, the candidates
for alignment along each coordi-
nate. Then, the graph of adjacen-
cies can be pruned discarding the
arcs (pairs of vertices) according to
the following rules:

• Remove from A the pairs which are end-points of the same edge,
since they are already aligned along one coordinate and it is not
possible to align them along another one without changing the edge
orientation or without collapsing it.

• Remove from A the pairs of vertices which are end-points of edges
incident on the same vertex. In a polycube, if the corners (c, c′) and
the corners (c, c′′) are already aligned along one coordinate, it is
not possible to align the pair (c′, c′′) without losing the axis-align
property or collapsing an edge.

• Finally, remove from A external adjacent corners, since it is use-
less trying align them since their alignment does not produce any
reduction in the number of domain of the base complex.

After the pruning, the set A contains only the candidates for alignment.
To obtain the sub-sets Ax, Ay and Az it is needed to determine, for each
pair in (c, c′) ∈ A ,to determinate the coordinate along which the alignment
is possible. If more than one possible alignment is found, for a corner
c along the same coordinate, the corner c′ closest along the considered
coordinate is selected as candidate for the alignment.

3.4 Corner alignment

The corner alignment problem is posed as an integer optimization problem,
enriched with a set of linear constraints aimed to preserve both the corner
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Figure 3.5: A 2D example that explain how the Voronoi diagram is used
to find the candidate pairs of corners to align; the Voronoi diagram in
background is computed with the original positions of the vertices (left
side); after the alignment the number of domains is reduced from 17 to 12
(right side).

alignments achieved at the previous iterations and the topological structure
of the polycube.

Let A be the set of corner pairs to align at the current iteration, and
let A∗

x, A
∗
y and A∗

z the sets of corner pairs for which an alignment has
already been achieved at previous steps (along the x, y and z coordinates,
respectively). The formulation of the proposed optimization problem is
the following:

min E = Ealign(A) + λ · Eshape

s.t.
cy = c′y cz = c′z ∀(c, c′) ∈ A∗

x

cx = c′x cz = c′z ∀(c, c′) ∈ A∗
y

cx = c′x cy = c′y ∀(c, c′) ∈ A∗
z

other polycube structural constraints.

(3.1)

The first term, the Ealign energy, aims to snap each corner pair (c, c′) ∈
A on the same iso-line of the integer lattice. This operation is independently
performed on each dimension. Let imagine to split A into three sub-sets,
Ax, Ay and Az, representing the sets of corner pairs to be aligned along
the x, y and z coordinate respectively. Then Ealign can be expressed as
follows:

Ealign(A) =
∑

(c,c′)∈Ax

(cx − c′x)
2 +

∑

(c,c′)∈Ay

(cy − c′y)
2 +

∑

(c,c′)∈Az

(cz − c′z)
2

In the carried out experiments, it was instantly clear that the alignment
term alone is not capable of producing extremely coarse base complexes.
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Indeed, the algorithm tended to align the furthest pairs (c, c′) ∈ A first,
leaving all the “easy” alignments for the subsequent iterations. This
“complex first, easy after” behavior is well explained by the fact that Ealign

is quadratic, and thus aligning the furthest pairs first is the best way
to rapidly minimize the energy. The problem with this behavior is that,
performing the most difficult alignments first, may heavily change the
shape of the polycube, generating deadlock configurations in which the (in
the beginning) closest corner pairs are no longer possible to align because
of the constraints the numerical program is subject to.

To compensate this behavior, a new regularization term is added to
the energy: Eshape. This energy is a simple corner-wise attraction to the
input polycube, that is:

Eshape =
∑

c

‖c− c̃‖2

with c being the current corner position and c̃ the original corner posi-
tion. The regularization term is particularly useful in the first iterations
because prevents dramatic changes in the polycube shape, thus favoring
the alignment between the closest corner pairs first. It is however limiting
towards the end of the optimization, when these easy alignments are no
longer available, and to align the furthest corner pairs would be necessary.
In Equation 3.1, the Eshape is therefore multiplied by a scaling factor λ.
Starting with λ = 1 at the first iteration, and halving it after each iteration,
provides the desired behavior; all the results produced in this chapter have
been produced using this scaling strategy. Notice that, different weighting
schemes may accommodate better results for certain shapes. Section 3.6
explains how to use λ in order to control the trade-off between polycube
simplification and mapping distortion.

3.4.1 Structural constraints

A series of constraints are imposed to preserve the axis aligned structure
of the input polycube, also avoiding edge collapsing and self-intersections.
This reduces to a set of linear constraints, as detailed below.

Collinearity of the end-points

Polycube edges are forced to keep them axis-aligned. As introduced before,
the Ealign portion of the energy function tries the alignment of corner pairs
along one coordinate. It is essential avoiding that this attempt will move
the edge off the integer lattice. Let e(c, c′) be a polycube edge connecting
the corners c and c′, and let suppose that e is aligned with the x axis.
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In order to keep its original orientation when solving for the c and c′

coordinates, the following two linear constraints are imposed:

{

cy = c′y
cz = c′z

(3.2)

These linear constraints prevent e to move off the x axis. In a similar
fashion edges aligned with the y and z axis can be forced to maintain their
original alignment.

Minimum length of edges

In the proposed formulation the smallest edge length is fixed to 1, to avoid
edge collapses. This is ensured by combining (3.2) with one more linear
constraint per edge e(c, c′):

(c− c′) · u ≥ 1 (3.3)

Where u = c−c′

‖c−c′‖ is a pre-computed unit length vector aligned with

e. Remind that the polycube edges cannot change orientation during the
optimization, therefore, the vectors u can be computed once by using
the original corner coordinates and then use them throughout the whole
iterative simplification. Given the axis aligned structure of a polycube, u
can be either (±1, 0, 0) or (0,±1, 0) or (0, 0,±1). Furthermore, notice that
this constraint not only prevents the edge to be shorter than 1, but also
preserves its original orientation, avoiding an edge flip.

Corners collapsing

All the constraints described before are quite natural to impose. One
condition more subtle to check is the avoidance of the collapse of corners
that are not end-points of the same edge. In particular, it is essential to
avoid that corners pairs (c, c′) ∈ A reach the alignment by occupying the
same position in the integer lattice. In this, a simple criterion like the
edge collapse is not enough to avoid the move.
Recall that, in such a case, the resultant poly-
cube would be not manifold and would lose its
original topology (Figure 3.2, left). To tackle
this problem, it is necessary to add a particular
constraint to the model , in order to create a sep-
aration plane between the two corners that are
attracting each other. Let e(c, c′) be an invisible
edge connecting the non adjacent corners c and
c′, and Πe the plane passing through the middle point of e and having

Gianmarco Cherchi Polycube Optimization and Applications



30 Polycube simplification for coarse layouts of surfaces and volumes

c−c′

‖c−c′‖ as normal orientation. This defines a partition of the space, with

c belonging to the positive half-space and c′ belonging to the negative
half-space of Πe. The planes Πe are computed at each iteration according
to the current coordinates of the polycube. When the model is solved for
the new polycube coordinates, two new constraints to keep c and c′ in the
half-space they belong to are added, specifically:

{

Πe(c) > 0
Πe(c

′) < 0
(3.4)

This is done for each corner pair (c, c′) ∈ A.

Dummy vertices and edges

The last condition to control is even more subtle than the previous. The
aim is to avoid that: (i) parts of the polycube which are not adjacent
compenetrate; (ii) the outside boundary and any of the holes of a non-
simple face touch, thus changing the face topology. To this extent, dummy
vertices and dummy edges are necessary. A dummy vertex is defined as
the intersection between the supporting line of a polycube edge and the
polycube faces closest to it on each side (if any). A dummy edge, on the
other hand, connects an end-point of a polycube edge to its corresponding
dummy vertex. All the dummy vertices and edges are computed in the
polycube, and treated as if they were real polycube edges, imposing that
their length must be equal or bigger than 1 (as in Equation 3.3). With
this simple new set of constraints the collapse between vertices and edge,
vertices and faces, edges and edges or inner and outer boundaries of the
same face are avoided. For consistency, special constraints to ensure
that dummy vertices will stay within the edge or face they belong to are
imposed. In Figure 3.6, the importance of our consistency constraints is
emphasized, showing an 2D example of polycube optimization with and
without dummy edges. As can be noticed, dummy edges ensure topological
consistency, without penalizing the quality of the alignment.

Dummy edges computation

Also for the computation of dummy edges, it is possible to work on each
dimension separately. The proposed procedure is explained for the x axis;
everything applies also to the y and z axis. Let f0

x ≤ f1
x ≤ ... ≤ fn

x be the
list of polycube facets having the x axis as normal orientation, ordered
according to their x coordinate. Let e(c, c′) be a polycube edge aligned
with the x axis, such that cx < c′x. Firstly, e is extended from the c side,
finding the first non-empty intersection with the closest facet fx having
x coordinate lower than cx. If such facet exists, the intersection point is
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considered as a dummy vertex and a dummy edge connecting such point
with c is added. The same process is repeated for c′. This operation is
performed for any edge in the polycube, using similar lists for the y and z
axis as well. Notice that, given the coarseness of polycubes, this procedure
is very fast (i.e., a fraction of a second).

Figure 3.6: A simple 2D example of a pair of corners to align (a). In
(b), the alignment without using dummy constraints. In (c) the red edges
are the dummy edges and the green vertices the dummy vertices. In (d)
the final polycube after the optimization with the dummy constraints.

3.5 Finalization

At the end of the corner optimization, a new polycube structure is obtained,
optimized in the sense that it has the least number of blocks. This polycube
may be dramatically different from the input one because the alignment
process produces a lot of compression and stretching of the block volumes,
with bad consequences for the distortion of the associated polycube map.

In order to preserve the quality of the original polycube map as much
as possible, it is necessary to solve the problem formulated in Equation 3.1
once more, without the Ealign part of the energy and with λ = 1. In this
final optimization, all the corner pairs alignments found at the previous
stage of the algorithm are constrained. This generates a polycube structure
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that is as close as possible to the input polycube but, at the same time,
has integer coordinates and optimal structure. The resulting polycube is
so similar to the input one that the distortion induced by our optimization
in the polycube map is often negligible (see Figure 3.7, the OUTPUT
bunny).

Figure 3.7: From left to right: the input polycube, the five iterations
necessary to complete the simplification process, and the output polycube.

The output is then finalized by fitting the input polycube (which is
either a triangle or a tetrahedral mesh) into this structure. Let P be the
input polycube: to fit the polycube in the optimized structure a simple
Laplacian problem ∇P = 0 is solved. Each vertex p ∈ P is constrained as
follows: (i) all its three coordinates if it is a polycube corner; (ii) two, if
p lies on a polycube edge; (iii) one if p is onto a polycube facet; (iv) no
coordinates at all if p is inside the polycube. The last condition applies
only if P is a tetrahedral mesh. For surface meshes, the ∇ operator can be
implemented by using the cotangent weights, whereas for volumetric meshes
the 3D mean value coordinates introduced by Floater et al. in [FKR05] can
be used. The result of this process is a polycube with the same connectivity
of the input but optimized structure. This polycube may contain flipped
or inverted elements and also has overlaps at concave features. Depending
on the applications, an optimization strategy may be used to improve the
mesh quality (e.g., [AL13]).
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3.6 Results

For the generation of the meshes, the standard polycube-based meshing
pipeline as described in Chapter 2 as been implemented. Then, the Edge-
Cone Rectification method [LSVT15] has been applied to optimize the
resulting hexahedral meshes and remove all the inverted elements possibly
present. A gallery of results achieved with the proposed method is depicted
in Figures 3.8 (only base-complexes) and Figures 3.11, 3.9, and 3.10 (base-
complexes and hex-meshes). The standard polycube meshing pipeline has
been compared with a modified pipeline in which we added the described
simplification system prior to the hexahedral mesh generation step.

In Table 3.1, the obtained numerical results are compared with the
standard meshing pipeline. For each model it is shown: elements count,
per-element quality (minimum and average Scaled Jacobian), and number
of domains in the base-complex (see Section 4.4.1 for a brief introduction
to the Scaled Jacobian measure). For a fair comparison, hexahedral
meshes with similar elements count have been computed, and the hex-
mesh optimizer with standard parameters has been run.

In all cases the optimized polycubes produced higher quality hexahe-
dral meshes compared to the meshes produced from the non-optimized
counterparts. This confirms what Gao et al. had already shown in their
work [GDC15]. Overall, with the proposed approach it is possible to
reduce the complexity of the initial polycube with factors ranging from
25% to 70%. In the last column of the table, the time necessary to perform
the polycube simplification is reported. Even in the most complex cases
a few seconds are enough for the algorithm to converge. Unfortunately,
performing a precise and extensive comparisons with the most similar
work [GDC15] has been difficult, because of the absence of the polycubes
they used to generate the hexahedral meshes shown in their paper. How-
ever, to give the reader an idea of the performances of the two algorithms,
two attempts of comparisons are shown here. For the RockerArm, they
started with a polycube-generated hexahedral mesh having 664 domains,
and they simplified its structure reducing it to 335 domains (50% gain).
With the presented method, the number of domains has been reduced
from 648 to 335 domains (49% gain). For the Bunny, they passed from
580 to 194 domains (67% gain), while with this method the reduction is
from 636 to 197 domains (gain 69%). These numbers suggest that the
proposed method produces comparable results both in terms of reduction
factor and minimum number of domains in the complex. The convergence
of this algorithm is reached in a few seconds, while the method presented
in [GDC15], in some cases, requires heavier computational effort.
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Figure 3.8: A gallery of optimized polycubes, shown with the color coded
quad layout. For every polycube, the number of surface blocks in the input
(IP), in the output (OP) and the gain ratio are reported.
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Model
Without simplification With simplification

Gain Time
#H mSJ/aSJ #D #H mSJ/aSJ #D

RockerArm 22K .22 / .94 648 22K .27 / .94 332 49% 0.82s
Bunny 48K .18 / .97 636 8K .21 / .94 197 70% 2.43s
ASM 30K .22 / .97 184 30K .29 / .97 114 38% 1.33s
CubeSpikes 32K .66 / .97 276 23K .69 / .98 111 60% 1.36s
Block 18K .18 / .95 158 18K .18 / .96 100 37% 1.96s
Femur 15K .50 / .96 145 15K .54 / .96 110 24% 0.43s
Hand 32K .46 / .98 172 5K .49 / .94 107 38% 1.33s
Table 8K .30 / .94 195 10K .59 / .94 149 24% 1.20s
Teapot 35K .45 / .98 323 34K .57 / .98 193 40% 4.28s

Table 3.1: The results are shown in terms of number of domains (#D)
obtained with the proposed simplification. In almost all the experiments,
the hexahedral meshes computed on top of optimized polycubes have both
higher minimum and average Scaled Jacobian (mSJ and aSJ). The #H
column represents the number of hexahedra of the model.

Model
[LVS∗13] [HJS∗14] Ours

#sv #dom #sv #dom #sv #dom

Cube Spikes 56 168 – – 56 78
Bunny 64 352 76 176 64 136
Block 48 112 – – 48 76
Rocker Arm 62 352 64 426 62 208

Table 3.2: Both visual and numerical results for the generation of coarse
quad-layouts are reported here. Comparisons with two famous polycube-
based methods are shown. For each algorithm, both the number of singular
vertices (#sv) in the layout and the number of surface domains (#dom)
are reported.
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3.6.1 Coarse quad-layouts

The proposed method can also be used to generate quadrilateral meshes
embedding a coarse quad-layout. To do so, at the meshing stage the only
surface of the base-complex is sampled, ignoring the vertices of the integer
lattice located in the interior of the polycube.

In Table 3.2 the quad-layouts obtained with the proposed method are
compared with the ones produced by [HJS∗14] and [LVS∗13]. For some
of the tested shapes, the performances of some of the best algorithms
specifically designed to generate coarse quad-layouts have been matched.
In particular, the layout computed for the block model has 48 singular
vertices and 76 blocks and it is equivalent to the ones generated from
[BCE∗13,CBK12]; the layout generated for the Cube Spikes model has
56 singularities and 78 domains and is equivalent to the one generated
from [TPP∗11]. However, since this optimization works in the polycube
space, it may not be flexible enough to match the performances of these
algorithms for shapes whose features fail to align to the XY Z frame.
For example, the method proposed in [ULP∗15] is capable of producing a
layout with 24 singularities and 28 domains for the RockerArm, whereas the
proposed result on that model contains 62 singularities and 208 domains.

3.6.2 Simplicity vs distortion

Optimizing the structure of the a polycube base-complex is always a matter
of finding the right balance between simplification and mapping distortion.
Too aggressive simplifications may result in distorted polycubes that
degrade the quality of the associated map. In Figure 3.7, all the iterations
(and associated λ values) for the simplification of the Bunny’s polycube
are shown. By properly setting a lower bound for the λ parameter the user
can control the simplification process, making the iterative simplification
quit before the natural convergence, thus obtaining a partially simplified
polycube with lower distortion map. This is an easy and intuitive way, for
the user, to control the trade-off between simplicity and distortion.
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Figure 3.9: Volumetric results, pt. 1. For every model: the input polycube
(IP), the block layout derived from it (IBL), the optimized polycube (OP)
and the block layout derived from it (OBL).
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Figure 3.10: Volumetric results, pt. 2. For every model: the input
polycube (IP), the block layout derived from it (IBL), the optimized polycube
(OP) and the block layout derived from it (OBL).
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Figure 3.11: Volumetric results, pt. 3. For every model: the input
polycube (IP), the block layout derived from it (IBL), the optimized polycube
(OP) and the block layout derived from it (OBL).

3.7 Limitations

The method proposed in this paper is a heuristic and, as such, it is subject
to some limitations. Following, a recap of the major shortcomings of the
proposed approach.

Corner pairing

The Voronoi-based corner pairing strategy described in Section 3.3 is not
guaranteed to generate all possible corner couples. Furthermore, when

Gianmarco Cherchi Polycube Optimization and Applications



40 Polycube simplification for coarse layouts of surfaces and volumes

there are multiple possible pairings for a given corner, the closest one along
the considered coordinate is selected. This may not be the optimal choice in
some cases, as depicted in Figure 3.12. Notice that, it is possible to change
or improve the corner pairing step without changing the mathematical
model set for the alignment.

Figure 3.12: When a polycube corner can align to more, nearly equidistant
corners, the alignment scheme may take the wrong decision, generating
sub-optimal results.

Map distortion

In the finalization step (Section 3.5), the similarity between the input
and output polycubes is maximized, assuming that this is a good proxy
to bound the distortion of the polycube map. Although this heuristic
produces good results for most of the tested models, there might be
pathological cases in which this assumption is not true. An example of
this is given in Figure 3.13, where some of the domains underwent severe
stretching after simplification, thus producing a low quality coarse layout.
In this case the user can trade simplicity for a lower map distortion with
the mechanism described in Section 3.6.2.

Figure 3.13: An example of excessive distortion produced by the corner
alignment is indicated by the black arrows in the right figure.
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Domains

The mesh structure is optimized in the polycube space, therefore the
limitations of the minimum domain number is inherited. In Figure 3.14,
two different structures for the triple torus model are shown. The one
on the left has been obtained with [TPP∗11] and the one below has been
obtained with the proposed simplification approach. The curved domains
at the extremities of the shape cannot be represented in the polycube
space, therefore it is split into three sub-domains each, thus generating a
higher number of cuboids.

Figure 3.14: The minimum number of domains in the decomposition is
lower bounded by the polycube structure. In the proposed decomposition
is not possible to obtain less than 18 domains, while the same model
decomposed with [TPP∗11] has only 10 domains.

Technical information

A beta version of the Cinolib library [Liv17] has been used as data structure,
to store both models and polycubes. The Voro++ [Ryc09] library has been
used for the computation of the Voronoi partitioning and Gurobi [Gur] as
numerical solver. Tetgen generator [Si15] has been used to turn tri-meshes
into tet-meshes and the Polycut algorithm [LVS∗13] to generate all the
polycubes shown in this chapter. See Appendix A for more details.
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Chapter 4

Selective padding for

polycube-based

hexahedral meshing

When volumetric domains to partition in hexahedra are regular enough
(e.g., with limited range of levels of details like mechanical and CAD
models), polycubes are an ideal tool for generating hexahedral meshes,
by computing volumetric mappings with their corresponding domains.
However, the quality of the hexahedra directly depends on the mapping
distortion. While the distortion is typically negligible inside the domain
(because of the regularity of the lattice used to grid the polycubes), it can
be excessive near the boundary. For instance, when a convex boundary
edge of the polycube with a folding angle of 90 degrees, maps to a flat
part of the domain boundary, with 180 degrees.

A common solution consists in Padding (or Pillowing [MT95]) the
entire surface by adding an extra layer of hexahedra, in a way that pushes
inside all 90-degree edges and replace them with edges incident to two
hexahedra. As detailed in [She07,SJ08], the padding operation starts with
an initial mesh from which a subset of hexahedra is defined to create a
shrink set. The shrink set is separated from the original mesh and shrunk.
The void left by such a shrinking process is filled by adding a new layer of
hexahedra. Padding offers a means to trade deformation for number of
elements, and increase the overall quality of the domain.

This chapter presents an automated method able to insert padding
elements only where they are needed to increase the overall quality. The
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motivation for this approach stems from the observation that, for specific
shapes, the padding operation is not necessary for the whole boundary. In
addition, it may in some cases worsen the mesh quality. The proposed
algorithm works selectively on the volumetric domain, keeping untouched
the parts that are directly derived from the polycube mapping having
already a good quality. It reaches this goal by operating selective insertion
of sheets of hexahedra in the domain. The solution is posed in terms of
complexity and quality of the final hexahedral mesh.

Figure 4.1: The proposed pipeline takes as input a model and its polycube
mapping (a); the relative hex-mesh is computed and the surface areas in
need of padding are located by analyzing the mapping quality (b); a binary
problem is set and solved to find a set of facets to extrude, in order to
create a selective padding layer (c); the mapping with the new hex-mesh
structure is computed (d).

4.1 General hex-mesh refinement

A wide range of local refinement algorithms have been proposed both for
quadrilateral and hexahedral meshes [SDW∗10]. Common objective are to
change the mesh resolution, to decrease the valence of inner vertices or
to adapt the mesh density in specific areas as required by FEM simulations.

Zhu et al. [ZCWG14] proposed a method to improve the quality of
CAD-based hex-meshes. While the user deforms the CAD model, the
associated hex-mesh is automatically improved by adding or removing
hexahedral sheets by using dual operations, in order to keep the resolution
and the quality of the mesh constant. In the proposed approach, the
regularity of the mesh is guaranteed by the polycube properties. For this
reason, it is always possible to limit the topology changes to the mesh
boundary.

Chen et al. [CGWW16] introduced an approach to achieve complex

Gianmarco Cherchi Polycube Optimization and Applications



Selective padding for polycube-based hexahedral meshing 45

sheet inflation under various constraints, in order to improve the mesh
quality. The method takes as input a set of user-defined boundary mesh
edges and a set of hexahedra. The edges specify the boundary position
where the new sheets should be inserted, and then the algorithm com-
putes, through an iterative solving of a Max-Flow and optimization steps,
the whole layer position. In the meshes used in the work presented in
this chapter, even if the sheet insertion is allowed in all the mesh, the
quality analysis is restricted to the mesh surface, because polycube-based
hex-meshes always have regular and good-quality inner elements. For this
reason, it is easier in this case to automatically detect the positions where
the insertion of new hexahedral sheets can improve the mesh structure.

Wang et al. [WSC∗17] proposed an automated block decomposition
method based on sheet operations, which generates a block decomposition
from which a high-quality hex-mesh stems. They start from a B-rep
solid model, compute the relative tet-mesh and finally extract a hex-mesh.
They insert and collapse whole sheets of hexahedra to improve the ob-
tained hex-mesh by solving an integral linear problem. Based on the good
polycube-based inner structure, it is possible to insert sheets of hexahedra
to improve the quality of the near-surface elements in the final hex-mesh.
It is interesting enough that they agree on the importance to develop an
algorithm for a robust insertion of boundary hexahedral layers, which is
what it is proposed in this chapter.

Owen et al. [OSE17] contributed a template-based approach for
generating locally refined all-hex meshes. Using a restitched set of split
configurations, a local refinement of the hex-mesh structure is performed,
yielding elements with minimum Scaled Jacobian of 0.3. The approach
proposed below hinges upon a similar set of templates. Since the sheets
insertions is applied in polycube based hex-meshes, using a restricted set
of dual operators is always possible to achieve the desired result. Indeed,
since only edges belonging to 1 to 4 facets are present in polycube-based
hex-meshes, it is possible using only the set of operators that increase by
one the valence of the hex-mesh edges, where it is needed.

Wang et al. [WGZC18] presented a method to improve the topology
of hex-meshes via frame field optimization and sheet operations. Starting
from a hex-mesh in which they build an initial frame field, they optimize
the field in order to obtain a high-quality one, that can be used to identify
the most problematic areas in the mesh. Then, they adjust the structure
of the mesh via a set of sheet operations. Even if they work with different
topologies and perform other types of analysis, Section 4.5 compares the
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novel proposed approach with this work, as both of them are adopting
different methods to achieve similar goals. Indeed, working with polycube
base hex-meshes allows to focus the analysis on the mesh boundary, while
they need to analyze the whole structure to perform the optimization.

4.2 Overview

This chapter presents an algorithm to perform selective and localized
padding into polycube-based hex-meshes. The introduction of distortion
when mapping an object with curved surfaces or non-right angles into
an axis-aligned shape like a polycube (e.g., a sphere mapped to a cube)
is inevitable. The aim is, thus, to improve the quality of the mapping
by adding hexahedral elements only in selected and limited areas of the
hex-mesh topology.

State-of-the-art padding operations, global padding in the whole hex-
mesh surface, can sometimes have the opposite effect of locally worsening
the quality of the mesh instead of improving it. The idea of this work is to
analyze the quality of the mapping between the polycube space and the
object space, and then to identify where a selective insertion of sheets of
hexahedra can improve the quality of the final mesh. The topology of the
mesh is changed only where it is needed, and it is left untouched in areas
where the quality is already acceptable.

4.2.1 The hex-mesh quality

The starting point of this approach is the mapping quality of the hexahedral
mesh elements. The Scaled Jacobian (SJ) will be used as a quality metric.
It computes, for each hexahedron, a value between −1 and 1. When SJ = 1
the hexahedron is a perfect cube with highest possible quality. When
SJ ≤ 0 the hexahedron is flipped and thus unfit to further processing.
The quality of a hexahedron is judged low when SJ is smaller than a
user-specified threshold.

With a simple example, the intuition behind this approach is shown.
Assume a box-cylinder object formed by a right box and a cylinder on
top, as depicted by Figure 4.2. When computing the hex-mesh of such an
object by gridding its polycube, the distortion is localized in the cylinder
portion of the object, where the polycube forms right angles.

Performing global padding on this model decreases the quality of
elements which are of high quality in the input model, as it is shown by
second row of Figure 4.3. By analyzing the local mapping distortion and
performing selective padding instead, it is possible to insert a sheet of
hexahedra only around the cylinder, and straight through the box to avoid
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Figure 4.2: Introducing distortion. From left to right: the tet-mesh of the
input model, its polycube (tet-mesh) and the final hex-mesh with distortion
highlighted. Here and in the next figures in this chapter, the color ramp on
the right is used as a quality indicator where red stands for highly distorted
elements, yellow for medium quality, and green stands for good quality
elements.

creating too many unnecessary elements and singularities (edge and vertex
turns, see Figure 4.3). The additional elements provided by sheet insertion
offer a means to improve the SJ-distortion of the low-quality elements,
after vertices relocation. It is forthwith evident the local negative effect
of global padding where it is not necessary. Performing global padding
increases the quality around the cylinder surface but also decreases the
quality of the right box, while adding 850 elements. The proposed selective
padding instead increases the quality only where it is needed (improving
both the minimum SJ and the average SJ) and adds only 336 elements.

Figure 4.3: Global vs selective padding applied to the box-cylinder model
(column). Left to right: global (a) and selective (b) padding. In (c) the
quality of the elements induced by (a) and in (d) the one induced by (b).
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4.2.2 The sheet insertion

Figure 4.4 depicts a sub-set of three template configurations used to extrude
the facets of a hexahedron. To minimize the number of added hexahedra,
the new layers of hexahedra are allowed to turn, around an edge (edge
turn) or a vertex (vertex turn). Notice that, an edge turn introduces 2
singular edges, while a vertex turn introduces 7 singular edges. For this
reason, in the following sections, a way to balance between introduced
elements and introduced singularities is proposed.

Figure 4.4: Padding via facet extrusion. Top to bottom: padding a single
facet (one added hexahedron), padding two facets (two added hexahedra
and one edge turn) and padding three facets (three added hexahedra and a
vertex turn).

The described approach takes as input a volumetric mesh and its
polycubes generated with the Polycut algorithm [LVS∗13]. It proceeds
in two main steps: mapping analysis (Section 4.4) then selective padding
(Section 4.3). The selective padding step refines the mesh structure to
provide additional elements, and hence degrees of freedom for existing
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mesh optimization approaches.

More specifically, the role of the mapping analysis step is to identify a set
of facets delineating hexahedra with high mapping distortion. According to
an analysis of the dihedral angles between facets of bad quality hexahedra,
the set of facets used as padding constraints for the global solver are
determined.

Starting from these facets, the goal is to selectively pad the mesh with
just-enough hexahedra to reduce distortion where needed. The proposed
solution to preserve the structure of the hexahedral mesh is to proceed
by sheet insertion, the sheets being decomposed into a series of consistent
facet extrusion operators.

A model with a constrained objective function and binary variables is
formulated: one variable per facet; one variable per edge (to count edge
turns) and one variable per vertex (to count vertex turns). The goal of
the optimization is to find a satisfactory balance between quality, number
of elements and number of singularities.

4.3 Selective padding

The local padding problem is posed as a binary all-linear problem with a
set of constraints that preserve the consistency of the topological hex-mesh
structure. Given a set of Hard-constrained Facets (HF ) of facets which
must be padded, the solution of the binary problem yields a set of facets
which allow a consistent padding that includes at least the facets from
HF . The proposed formulation enables the user to trade the number of
additionally padded facets for the number of singularities introduced via
padding.

4.3.1 Simple binary problem

Let M = (V,E, F,H) be the polycube-based input hex-mesh composed
of vertices, edges, facets and hexahedra. A binary variable xfi ∀ fi ∈ F
is created for each facet specifying whether this facet should be padded
(through extrusion) or not. By definition, every inner edge of a polycube-
based hex-mesh has four incident facets. If changing the mesh by extruding
facets is needed (as explained in Section 4.3.3), it is possible to extrude, for
an inner edge, only 2 or 4 facets without creating topological inconsistencies.
The outer edges, on the other hand, can be incident to 1, 2 or 3 hexahedra.
These sub-sets of edges are denoted by E1H, E2H and E3H. The first
goal is to pad as few facets as possible:
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Epadding = |H|−
2

3

∑

fi∈F\HF

xfi (4.1)

where the term |H|−
2

3 is added to achieve resolution independence.

Two constraints are enforced during optimization. Firstly, all facets in
HF must be padded:

xfi = 1 ∀fi ∈ HF (4.2)

Secondly, in order to achieve a valid, hex-topology preserving padding,
we require the number of padded facets around each edge, but the ones
belonging to E1H and E2H, to be even:

∑

fi∈F (ej)

xfi = 2kj ∀ej ∈ E \ (E1H ∪ E2H) (4.3)

where kj is an integer variable defined for each edge involved in this
constraint, and F (ej) is the set of the facets incident to edge ej . They
must be treated in different ways, with respect to the constraint:

1. Edges in E1H can have 0, 1 or 2 selected incident facets. All these
configurations are suitable.

2. Edges in E2H can only have three incident facets, two on the surface
and one inside. Almost all the possible paddings are legal: (i) the
padding of the inner facet, (ii) the padding of both surface facets,
(iii) the padding of one of the surface facets along with the inner
one, causing an edge turn, and (iv) the padding of all three facets.
A custom constraint is inserted in the model to avoid the case of
padding only one of the surface facets that would cause a topological
inconsistency.

3. Edges in E3H are covered in the general constraints of Eq 4.3. It is
clear that, in this way, some legal cases are excluded but, considering
how the insertion of new layers via facet extrusion is defined, they
would not generate valid solutions. Moreover, the possibility to reach
an optimal solution is not limited.

Figure 4.5 illustrates an example solution of this simple binary problem.
In order to reduce the number of inserted singularities, the base formulation
is then extended.

Gianmarco Cherchi Polycube Optimization and Applications



Selective padding for polycube-based hexahedral meshing 51

4.3.2 Binary problem extension

Minimizing Epadding alone under constraints 4.2 and 4.3 yields a valid
solution with the lowest number of extra elements. In practice, however,
this may not always be the desired solution. As depicted by Figure 4.5(d),
the padding may introduce singularities inside the mesh. While adding
few more hexahedra is often better than introducing extra singularities,
turns of the padding layer provides a means to avoid generating many
extra elements. A trade-off between extra elements and extra singularities
is required.

Figure 4.5: An example of the described padding strategy. In (a) the red
set of facets has to be extruded; in (b) the solution obtained with the basic
formulation; the mesh in (c) is similar but, in this case, padding straight
to the bottom would insert many hexahedra. The proposed formulation
finds the solution in (d), with fewer added hexahedra, by introducing edge
and vertex turns inside the mesh.

The problem formulation is thus extended with a binary variable tei
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for every edge ei ∈ E, recording a turn configuration at the location of ei
(cf. Figure 4.4 middle) and thus the introduction of a pair of valence 3
and 5 edges. Additionally, a binary variable tvl for every vertex vl ∈ V is
added to the model, recording a vertex turn configuration (cf. Figure 4.4
bottom). Using these edge and vertex variables, it is possible to formulate
an additional objective of keeping the number of introduced singularities
low (e.g., minimizing the number of layer turns) via:

Ecomplexity = |H|−
1

3

∑

ej∈E∗\E1H

tej +
∑

vl∈V ∗\V 1H

tvl (4.4)

where E∗ and V ∗ are the sub-sets of edges and vertices that are incident
to two orthogonal facets of HF since these layer’s turns are unavoidable
and will be in the final solution. As for edges, V 1H denotes the sub-sets
of vertices incident to only one hexahedron. As before, the term |H|−

1

3

is added to the left sum to render the formulation independent of the
hex-mesh resolution.

In order to ensure the indicator variables tei to be 1 if and only if an
edge turn configuration is present, the following constraint is added:

tej = |xfi − xfk| ∀ej ∈ E∗ \ E1H,

~fi = ~fk and fi, fk ∈ F (ej)
(4.5)

where F (ej) denotes the set of facets incident to edge ej . According to
Equation 4.5, to detect a possible edge turn in the edge ej , a pair of facets

fi, fk ∈ F (ej) having the same orientation (~fi = ~fk) is considered. As
can be observed in Figure 4.6, the value of the subtraction |xfi − xfk|
determines if an edge turn is present in ej .

Figure 4.6: Detection of an edge turn. Left: two selected facets with
similar orientation. Middle: |xfi−xfk| = 0 hence no edge turn is detected.
Right: |xfi − xfk| = 1 hence an edge turn is detected.
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Similarly, to ensure the indicator variables tvl to be 1 exactly when a
vertex turn configuration is present, the following constraint is added:

tvl = |tei − tek| ∀vl ∈ V ∗ \ V 1H,

~ei = ~ek and ei, ek ∈ E(vl)
(4.6)

where E(vl) denotes the set of edges incident to vertex vl. According to
Equation 4.6, to find a vertex turn, a pair of edges ei, ek in the set of edges
incident to vl in E(vl) having the same orientation (~ei = ~ek) is considered.
The te variables of the selected edges are subtracted, in absolute value, in
order to detect whether a vertex turn is present in vl.

Finally, under constraints 4.2, 4.3, 4.5 and 4.6, a linear combination of
Epadding and Ecomplexity is optimized:

min E = Epadding + λ · Ecomplexity (4.7)

Adjusting the coefficient λ provides the user with a means to trade the
number of extra elements for the number of extra singularities. Figure 4.14
illustrates the output solution for three different values of λ.

Notice also that, satisfying Equation 4.2 for all surface facets is a
feasible solution, so it is easy to affirm that a solution satisfying the
aforementioned mentioned constraints always exists.

4.3.3 The new layer insertion

The output of the solver is a set of facets PF representing the areas where
one or several hexahedral sheets must be inserted. The padding layer is
generated by extruding each facet fi ∈ PF and transforming it into a
hexahedron. The set of extruded facets forms the new layer. Each facet is
extruded in both directions, considering a fraction of the edge lengths of
incident hexahedra as a reference, except for the surface facets which are
extruded only towards the inside. The final structure of the mesh, including
the new elements, is deduced from analyzing the global configuration of
facets in PF . As shown by Figure 4.7, the extra singularities are decided
in accordance to the adjacent facets.

4.4 Mapping analysis

The previous section describes a method which, given a set of facets
HF that need to be padded, finds a complete set of facets which can
be extruded while preserving the hex-mesh structure. The following one,
instead, details how the suitable set HF can be found, such that the
completed padding improves the quality of the hex-mesh.
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Figure 4.7: Example of padding configurations and associated sheet
insertions. When four facets are selected (a) the resulting new layer of
hexahedra introduces new singularities, depicted with red circles (b). If the
same four facets are selected, together with four more ones (c) the final
layer is different (d), and there are no extra singularities added.

4.4.1 Distortion per facet

As polycube-based hex-meshes are commonly well shaped inside the do-
main, the main idea is to analyze the boundary hexahedra in order to
identify the ones which would benefit from being padded. The quality of
a hex-mesh is commonly measured via the Scaled Jacobian (SJ). For each
hexahedron in the hex-mesh, the minimum determinant of the Jacobian
matrix is computed, evaluated at each of its 8 corners, and the center of
the element divided by the corresponding edge lengths. According to the
Verdict manual [SEK∗07], a “good” quality hex-mesh should have only
hexahedra hi such that SJ(hi) ≥ 0.5. By observing the made experiments,
improving the quality of the mesh beyond this value is sometimes possi-
ble. Therefore, it has been decided to limit the analysis to the boundary
hexahedra whose Scaled Jacobian is lower than T = 0.6, considering the
remaining ones as already good. This value may be, of course, adjusted to
fit application-specific requirements.

The quality of a boundary hexahedron can often be improved by
padding. However, padding all its facets is not suitable (c.f., Figure 4.3).
A transition from a distortion measure per hexahedron to a distortion
measure per facet is therefore necessary, where a high facet distortion
indicates that padding is required. The set HF of facets which must
be padded can then be simply defined as those facets whose distortion
measure exceeds a user-specified threshold T derived from the quality
requirement of a specific application.

The transition takes place in two steps. First, a distortion measure per
boundary edges is defined, based on the dihedral angle between incident
facets. The distortion of a facet is then defined as the maximum of the
distortion of the four facet edges. In Section 4.3.1, the sub-sets of edges
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E1H, E2H and E3H have been introduced as the edges respectively
incident to 1, 2 and 3 hexahedra. Since padding the facets incident on the
edges of E2H introduces two new hexahedra which again share a E2H
edge, distortion is unlikely to improve. Therefore, only the boundary edges
in E1H and E3H are considered, both shown in Figure 4.8.

Figure 4.8: Example of an E1H edge (left) and of an E3H edge (right).

For each boundary singular edge, belonging to either E1H or E3H,
the dihedral angle between its incident boundary facets is computed as
θ = −→ni ·

−→nj (see Figure 4.8 to identify ni and nj), and the measure of how
much it deviates from its ideal value (90◦ for the E1H edges or 270◦ for
the E3H ones) is analyzed. For E1H surface edges, D(e) = θ if θ ≥ 0.5
and 0 otherwise. For E3H surface edges, θ is computed based on the
two incident inner facets fi and fj , because they determine the angle to
split in case of high distortion. The D(e) valued is defined as D(e) = |θ|
if θ ≤ −0.5 and 0 otherwise. Finally, a value D(f) between 0 and 1 is
assigned to the surface facets, to record how much it is necessary to extrude
them in order to improve the quality of the mesh. The D(f) value of a
face is defined as the maximum distortion value of the four incident edges:
D(f) = maxe∈f D(e). In this step, the areas of the mesh composed of only
hexahedra with SJ ≥ T are ignored.

4.4.2 Padded facets

Each facet of the polycube hex-mesh surface is now assigned a distortion
value. During the experiments phase, it has been observed that the direct
use of these values to determine the set of constrained padding facets HF
is not ideal as they may form a fragmented set with isolated low distortion
facets in the middle of high distortion patches, and vice-versa
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(see Figure 4.9). To obtain a more
consistent set of uniform patches
of facets HF , a smoothly propa-
gation of the distortion values is
needed. Then, the HF set can be
defined via the solution of a Max
Flow - Min Cut problem [BK04].
To propagate the distortion values
associated with the surface facets,

a simple iterative flooding algorithm is applied, starting from facets with
D(f) 6= 0 and filling the adjacent empty ones. The process is iterated for
a maximum number of steps denoted by k in the following formula:

D(fi)
n+1 = D(fj)

n · e
−n
2 ∀fi ∈ Nb(fj), 0 ≤ n ≤ k (4.8)

where n is the current iteration, e
−n
2 is a term to favor a soft propagation

of the deformation values (see Figure on the left), and Nb(fi) is the set of
neighboring boundary facets of fi. The described formula is applied only
to facets with D(f) = 0, while the facets with a value different from 0 are
not changed.

The Max Flow - Min Cut graph is defined by two nodes for the two
used labels (L1 for facets f ∈ HF and L0 for the other facets), a node
for each surface facet, an arc between adjacent surface facets and an arc
between facet nodes and label nodes. Then, the Max Flow - Min Cut
problem is formulated as follows:

E(L) =
∑

f∈SH

Pf (Lf ) +
∑

〈fp,fq〉

Ppq(Lp, Lq) (4.9)

where SH is the set of hexahedra with at least one face on the boundary.
Pf (Lf ) represents a penalty for cutting an arc between a facet fi and the
label Lfi . Pfi is defined as:

Pfi(Li) = 1− |li −D(fi)| (4.10)

where li = 0 for Pfi(L0) and li = 1 for Pfi(L1). Assume D(fi) is close to
1: Pfi(L0) ≃ 0 and Pfi(L1) ≃ 1. Therefore, it is convenient to cut the arc
between fi and L0 and to assign to fi the label L1. Notice that, assigning
the facet fi to the label L1 corresponds to inserting fi in the HF set of
hard constraints.

The right sum represents the penalty for cutting an arc between two
adjacent facets fp and fq. In other words, it assigns a price to assigning
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two labels Lp and Lq to two adjacent facets fp and fq and Lp 6= Lq. We
define Ppq as:

Ppq(Lp, Lq) = [1− |D(fp)−D(fq)|] · [D(fp) +D(fq)] (4.11)

where [1 − |D(fp) −D(fq)|] measures the difference between D(fp) and
D(fq), and [D(fp)+D(fq)] favors cuts between arcs in low distortion areas.

The solution of the Max Flow - Min Cut returns a collection of facets
ready to be used as hard constraints (HF ) in the binary problem formu-
lation described in Section 4.3. As it is shown by Figure 4.9, they are
organized in consistent patches with neither holes nor isolated facets.

Figure 4.9: Computing hard constraints. Left: D(f) values associated
to each facet after the first step; notice, on the top model the isolated
high-distortion elements, on the bottom model the isolated low-distortion
elements (pointed by the arrows). Middle: D(f) values after the soft
propagation. Right: the final constraints resulting from solving the Max
Flow - Min Cut formulation, which have filled the interruptions.

While the above steps may appear ad-hoc, they offer a robust way
to produce homogeneous patches of hard constraints. The alternative
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solution of computing one distortion value per facet and then use such
values as soft constraints as been also considered. However, considering
the negligible time required by the graph-cut solve step (fractions of a
second), it has been decided to keep this method in order to provide the
solver with a set of hard constraints. By using hard constraints obtained
as described above, better results have been achieved (concerning both
quality and singularity count) in considerably lower time. Moreover, by
visual inspection of the hard constraints, the user is provided with the
guarantee that they will be part of the final solution.

4.5 Results

The meshing pipeline described in Section 2.1 has been implemented to
produce all the polycube-based hex-meshes, and the optimizer described
in [LSVT15] has been used to optimize the results. For a fair comparison,
the optimizer has been applied to the no-padded version and in the ones
with global and selective padding. During the optimization, the surface
attraction parameter has been set as high as possible, to preserve the
original shape of the model. In this way, for each one of the models in
this chapter, a maximum Hausdorff distance lower than 0.009 w.r.t. the
bounded box diagonal has been obtained. In all the figures depicting
results, the following color-code is used: the mesh separatrices are depicted
in red, and the quality of the mesh elements ranges from green (good) to
red (bad). The padding layer is shown in blue. For each model, the hex-
mesh directly derived from the polycube is compared to the hex-meshes
with global and selective padding applied.

Table 4.1 reports the most relevant data for the tested models. For each
model, the following information are reported: the number of hexahedra
(#H), the number of singular vertices and edges (#Sv and #Se), and the
minimum and average Scaled Jacobian (mSJ and aSJ). In particular, for
the Chamfer and Lego models, the results obtained with different λ values
are recorded, to measure the impact of λ over the final mesh. Moreover,
for the “Double hinge” model, the version without padding the holes (NH)
and the one with padded holes (WH) are reported. It shows that padding
concave angles, sometimes, does not significantly improve the final quality.
The proposed selective padding is also applied to the Test 1, 2, 4 and 5
models,taken from [WGZC18]. The sheet insertion operation takes less
than a few seconds and, thus, it is not reported, since it is negligible.
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Figure 4.10: Results, pt. 1. For each shape: the input model (IN),
the global padding (GP), the new layer, in blue, of the selective padding
(SPL) and the final model (SP). Colors indicates quality as described in
Figure 4.2.
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Figure 4.11: Results, pt. 2. For each shape: the input model (IN),
the global padding (GP), the new layer, in blue, of the selective padding
(SPL) and the final model (SP). Colors indicates quality as described in
Figure 4.2.
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Figure 4.12: Results, pt. 3. For each shape: the input model (IN),
the global padding (GP), the new layer, in blue, of the selective padding
(SPL) and the final model (SP). Colors indicates quality as described in
Figure 4.2.
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Figure 4.13: Results, pt. 4. For each shape: the input model (IN),
the global padding (GP), the new layer, in blue, of the selective padding
(SPL) and the final model (SP). Colors indicates quality as described in
Figure 4.2.
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As commented at the beginning of this chapter, the padding operation
usually improves the global quality of a volumetric mesh. The results
shows that the proposed selective padding allows to obtain a substantial
quality improvement over the global padding. In Table 4.1, it is also
possible to observe that, on the top of obtaining a better quality, the
proposed method adds fewer extra elements than global padding. The
only trade-off to pay is, sometimes, the increase number of singularities.

Table 4.2 records a brief comparison between the results of the pro-
posed algorithm and the one described in [WGZC18], applied to the same
domains. As we have not been granted access to the original software, the
comparisons is performed on a series of results produced by their algorithm.
Therefore, starting from the same shape, the proposed approach extracts
and optimizes a polycube-based structured hex-mesh, while they analyze
and optimize an unstructured one. This allows the described pipeline
to start from a regular structure of good quality inside the shape, and
apply the algorithm just on the surface. Comparable or better results are
obtained for both the minimum and average Scaled Jacobian.

Model
[WGZC18] Ours
mSJ aSJ mSJ aSJ

Test 1 .35 .94 .66 .98

Test 2 .34 .88 .73 .96

Test 4 .64 .96 .68 .99

Test 5 .39 .89 .41 .98

Table 4.2: A comparison between results obtained with the proposed
selective padding and with the mehod proposed in [WGZC18].

4.5.1 Extra elements vs extra singularities

The improvement of the hex-mesh structure requires to find the right
trade-off between the number of extra elements and the number of extra
singularities. The user-specified λ parameter controls the number of turns
of the inserted sheets and therefore the addition of singular vertices to the
mesh structure. The Lego model in Figure 4.14 and the Chamfer model
in Figure 4.13 show the differences in the final result depending on the
used λ value. With a low λ value, the solver can insert turns everywhere
in the mesh structure, with the goal of padding as few facets as possible.
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With a high λ value, the number of turns, and new singularities, is limited
at the price of adding more extra elements. Finding the well-balanced λ
value allows reaching a reasonable compromise between extra elements,
extra singularities and final quality, as it is shown in the middle example
in Figure 4.14 (with λ = 2).

Figure 4.14: Three versions of the proposed selective padding applied to
the Lego model, with three different λ values.

4.5.2 Timing

The solver’s timing depends on the number of elements in the mesh and
its shape. The solution space varies depending on the input structure
of the mesh. A “coarse” hex-mesh is usually used to solve the padding
problem, since a refinement step is always possible in post-processing
(e.g., splitting each hexahedron in eight sub-hexahedra). When a model is
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complex enough not to allow to start from coarse hex-meshes, the solver
can require up to several minutes of computation to produce the set of
facets to extrude.

4.5.3 Mechanical parts vs. organic shapes

As mentioned at the beginning of this chapter, polycubes are an ideal tool
for generating hexahedral meshes of quite regular shapes with a limited set
of details. In this class of objects, mechanical pieces and CAD models are
a relevant subset. As it is clear from the shown results, the focus of this
work is on this class of objects. Indeed, the application of the proposed
selective padding on organic and free-form polycube-based shapes produces
the same result of global padding. In Figure 4.15, the use of this algorithm
is applied on the Bunny model. It is evident that, to improve the mesh
quality, it is needed to push inside all the singular edges of the mesh.

Figure 4.15: Selective padding in organic shapes. On the left the model
without padding, on the right the selective padding (equivalent to the global
one) applied on the same model.

4.6 Limitations

While the proposed experiments show excellent results, improving the
quality of both the original and the global padding models, it is not pos-
sible to prove that this approach reaches the maximum possible quality
for the chosen application field. Searching for the best trade-off between
complexity and distortion would require either trying all possible λ values
and then selecting the one yielding the best results, or proceeding by
dichotomy. According to the carried out experiments, the value of the λ
parameter which leads to the best results depends on the shape of the
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model. It is, thus, not possible to suggest the silver bullet value of λ that
could work for any model. The choice of λ can be a fine-tuning task and
the user is let to set it interactively.

The selective padding approach can detect distortion in the proximity
of all concave tunnels in models with genus greater than 0. For simplicity,
these particular shapes ar refereed as “Holes”. However, padding the
holes is not always relevant for improving the overall quality. Experiments
carried out on the Double hinge model show that the quality can even
decrease.

Technical information

The Cinolib library [Liv17] has been used as data structure to store both
models and polycubes. Gurobi [Gur] has been used as numerical solver.
Both the Tetgen [Si15] and Tetwild [HZG∗18] tet-mesh generators have
been used to turn tri-meshes into tet-meshes and the Polycut algorithm
[LVS∗13] to generate all the polycubes shown in the chapter.See Appendix A
for more details. A special thanks goes to the authors of [WGZC18], for
sharing the models they used in their article.
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Part III

Polycubes for fabrication
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Chapter 5

Digital fabrication

Fabrication is a fast emerging field of research in geometry processing.
It collects the study and the implementation of all the processes and
techniques that can be used to produce real objects from digital models.
Novel algorithms and techniques have flourished, to let almost everybody
reliably 3D print accurate and cheap reproductions of digital objects. At
the base of this explosion, there are many manufacturers which are selling
low-priced entry-level 3D printers, leading to a sound diffusion between
hobbyists.

The most relevant technologies are, but are not limited to, 3D printers
and CNC milling machines (see Figure 5.1). These represent two different
approaches to fabrication, usually referenced as additive manufacturing
and subtractive manufacturing. Research in the fabrication field is mostly
related to additive manufacturing, while a few works address subtractive
manufacturing. This chapter briefly introduces the principal features
and limitations of additive and substractive manufacturing, and the most
relevant literature regarding both topics.

5.1 Additive manufacturing

Additive manufacturing (or additive fabrication) makes use of machines
that build the final object layer by layer. These machines are the 3D
printers, and they can use multiple materials. The most common printers
use thermoplastic polymers and deposit the fused filament to build the
layer. However, other technologies are available to use other materials,
such as liquid resins, metals, and various powders.

This kind of manufacturing does not impose any constraint on the
model’s shape. However, some models require external support structures,
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Figure 5.1: An example of a 3D printer and a CNC milling machine.
The models in the picture are the machines we have in our laboratory and
we use to test our works in the fabrication field.

as 3D printers can not directly print steep overhangs or islands (see
Figure 5.2). One has to remove these structures manually after printing,
and in an industrial context, they represent a significant waste of material
and time. To avoid this waste, Hu et al. proposed in [HLZCO14] an
algorithm to subdivide the model in approximate pyramidal shape, printable
without supports. Herholz et al. in [HMA15] suggest a similar approach,
by exploiting the surface deformation to reduce the number of pieces.

Figure 5.2: Islands and overhangs need external support structures.

The hardest constraint imposed by 3D printers regards the size of the
object, as it is undoubtedly impossible to print anything greater than the
printing chamber. The solution to this problem is, again, to partition the
model into smaller portions, print them, and reassemble them back.

Many works that face this problem appeared in the last years, and
the most remarkable ones are in [LBRM12], [SFLF15] and [HFW11]. The
algorithm proposed by Song et al. in [SFLF15] creates self-interlocking
structures, to avoid the use of glue or connectors, and it obtains a stable
structure that can be disassembled and reassembled multiple times. The
algorithm proposed by Hao et al. in [HFW11] tries to minimize the
aesthetic impact of seams. Lastly, the algorithm proposed by Luo et al.
in [LBRM12] generates a partitioning of the input model that optimizes
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a set of objective functions, including printability of every block in the
working volume, assemblability, avoiding small blocks and optimal position
of the seams (both for aesthetics or structure). They subdivide the model
using cutting planes, and a BSPTree gives the order of cut. This approach
does not allow keeping apart semantically separate portions of the object.
Furthermore, they don’t consider the supports that are necessary to print
every block of their partition, which can complicate the assemblability due
to the presence of connectors in the planar portions of the blocks.

An extensive discussion on pros and cons of additive fabrication, par-
titioning and related issues can be found in the survey of Livesu et
al. [LEM∗17].

5.2 Subtractive manufacturing

Subtractive manufacturing (also known as machining or subtractive fab-
rication) consists in removing material from a starting block until only
the desired shape is left. CNC milling machines have a crucial role in
mechanical manufacturing since decades, but only recently experiments on
automatic free-form shape production started. Milling, unlike 3D printing,
enables manufacturing objects with a large variety of materials, like wood,
metal or stone. Despite this significant plus, the usage of subtractive
techniques for free-form production still struggles in the digital fabrication
field, due to the hard constraints that they impose on the geometry of the
objects. There are three main categories of milling machines, which differ
for the degrees of freedom of the milling tool.

5.2.1 3-axis

The most diffused, inexpensive and easy to use milling machines can move
their tool on the three axes of the Cartesian system and, thus, they have
three degrees of freedom. These characteristics limit the class of objects
they can produce: millable shapes can be only height-fields with flat bases.
In other words, each line parallel to the z axis can cross the shape only
once, as shown in Figure 5.3. Even if there is a vast bibliography on
the production of mechanical parts with CNC manufacturing, there is
still limited literature on the subject of decomposing generic free-form
shapes into a set of millable parts. Alemanno et al. [ACP∗14] define
a user-assisted method for decomposing 3D shapes into height-field in
the domain of cultural heritage. Their method is manually driven and
overlaps between pairs of blocks are resolved by using an interlocking zipper
pattern. Herholz et al. [HMA15] use 3-axis milling machines to create
millable molds. These molds can be used to obtain the final model by
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solidifying a liquid material which decants inside the glued molds. Muntoni
et al. [MLS∗18] perform a decomposition in height-field blocks that can be
manufactured in a single pass with a 3-axis milling machine, using a fully
automatic algorithm in two steps. They first identify all the bounding
boxes containing height-fields and then select a subset determining a
partition of the input shape. As they explain, a geometry manufacturable
with a 3-axis machine must respect several constraints (such as height-field
geometry w.r.t. a given direction, flat polygonal base, etc.).

Figure 5.3: The model on the left is millable (it is a height-field); the
model in the middle is not millable (it is not a height-field and, thus, it has
undercuts), the model on the right is not millable even if it is a height-field
because its base is not flat.

5.2.2 4-axis or more

More complex machines have higher degrees of freedom, typically mov-
ing the tools over four, five, and six axes. These devices impose looser
constraints over the machined shape, but, at the same time, they are
more expensive than the 3-axis ones, and they require more sophisticated
software and analysis which enables the automatic generation of tool-paths.
Typically, in fact, the user generates the tool-paths manually based on his
or her own experience. It is also possible to add accessories to a 3-axis
machine having a 4th degree of freedom given by the rotation axis. This
add-on is quite useful since a 4-axis machine can produce all the models
that, given a rotation axis, exposes every point of the surface in at least
one rotation. This constraint is weaker than the one imposed by the 3-axis
machines. Recently Hou et al. [HF17] improved the results obtained previ-
ously by Frank et al. [FWJ06], and using the global visibility map (GVM)
of the shape can determine the best rotational axes for machining it. The
authors show results obtained on mechanical parts and the computational
effort reported is in the order of tens of minutes for shapes just more
complex than a cube with pockets.
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In the next chapter, a novel method to compute a shape partitioning,
with fabrication purposes, is proposed. The decomposition of a 3D digital
model is induced by its polycube, and the fabricability of every piece of
the decomposition is analyzed, for both additive and subtractive technolo-
gies. This analysis also includes a checking tool, developed to verify the
manufacturability of the parts with a 3-axis milling machine.
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Chapter 6

Fabrication oriented

shape decomposition

using polycube mapping

The introduction of cheap and small 3D printers and milling machines
has boosted the research in the field of digital model representation for
fabrication. As smaller and cheaper these machines are, as fewer function-
alities and features, compared to the high-level ones, they have. Noticeable
difference are the size of the printing chamber and the milling volume (the
maximum fabricable volume). The only possibility to print big objects is,
thus, to decompose them into multiple portions, fabricate them separately
and, later on, reassemble the object.

In both 3D printing and machining, other essential constraints apply
to the shape of the object, and a way to bypass them is to subdivide the
object into pieces that satisfy the required features:

• a 3D printer cannot produce, without introducing extra-structures,
the supports, parts with an overhanging larger than a fixed amount,
usually set at 45◦;

• a 3-axis milling machine can produce only parts which are height-
fields with a flat base;

• a 4-axis milling machine can produce parts which are radially height-
fields but machining a piece at a time.

A solution to this class of problems is a shape decomposition guided
by the above constraints and size constraints. One can obtain a straight-
forward decomposition by using cutting planes to fit each part in size, but
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it would probably be meaningless in shape. Moreover the cutting planes
are keen to cut other portions of the shape in an uncontrolled way. On
the other hand, it could be difficult to control the size of parts obtained
using fancy and efficient decompositions which take into full account the
semantics of the shape.

In this chapter, a simple and low-cost, computational wise, approach
for the decomposition of a three-dimensional shape is proposed, which
passes through its parametrization in the polycube space. As explained in
Chapter 1, polycubes have to respect three main constraints: axis-aligned
faces, only 90◦ dihedral angles and integer coordinates. These restrictions
cause the polycubes to be a simplified representation of the original mesh
which can catch the low-frequency semantics of the shape. Using the state-
of-the-art polycube generation software Polycut [LVS∗13], it is possible to
control the decomposition of the input shape fine-tuning the parameters
which determine the compactness and fidelity of the result. This choice
allows producing decompositions in a time varying from seconds to few
minutes.

The main contributions of the work presented in this chapter are:

• A pipeline to obtain an object decomposition that is guaranteed to
be printable with a 3D printer of a given chamber volume without
or with reduced use of supports.

• A checker to verify if the obtained decomposition could be milled
using a 3-axis or a 4-axis milling machine.

It is worth to mention again that the proposed pipeline strictly relies on
the preliminary decomposition induced by the polycube mapping. Without
an efficient polycube generator, the whole process does not hold.

6.1 Overview

As introduced in Chapter 5, several works have the aim to decompose a
3D shape for the fabrication process. The aim of the work proposed in this
chapter is to decompose complex models into simpler parts that better suit
limitations in current fabrication processes, both additive and subtractive,
by using a polycube-based decomposition. As well stated in [LEM∗17],
when planning the production of an object in additive manufacturing, it
is possible to decide to partition the object into multiple pieces. This
partition can be due to multiple reasons, but one of the most common
situations is when the object is greater than the printing chamber.

In this work, an alternative way of partitioning the shape is proposed.
This method is conceptually simple if a polycube map is available for the
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Figure 6.1: The decomposition pipeline, from left to right: the mesh
representing the input shape; the polycube computed from the input model;
the polycube decomposed in orthogonal parallelepipeds with a sweeping
algorithm; the decomposition mapped back onto the input shape and the
final fabricated real object.

input shape. It then induces a partition on the shape by using this map,
smartly and efficiently. In the reported results, it is clear that the proposed
method worked satisfactorily for a variety of examples (see Section 6.6).

The proposed decomposition algorithm requires only one parameter:
the compactness term of the Polycut algorithm for building the polycube
(see Section 6.6). Furthermore, the shape is partitioned keeping in mind
the requirements of both additive and subtractive manufacturing.

The proposed production pipeline can be summarized as follows:

1. It start from a 3D input shape (a triangle mesh representing the
surface of the model and a tetrahedral mesh for the interior);

2. The polycube representation of the input shape is computed;

3. The polycube is partitioned in orthogonal parallelepipeds;

4. The partition computed at step 3. is used to subdivide the original
model in the shape space using boolean operations.

All the steps listed above are fully automatic. If the results do not re-
spect the constraints (45◦ maximum overhang for printing and height-field
for milling), it is possible readily repeat the last step after manually split-
ting one or more parallelepipeds in polycube space with a plane orthogonal
to the Cartesian axes. The splitting is trivial working in the polycube space.

The following sections explain the third and fourth steps of this pipeline
which are the primary focus of this work. Figure 6.1 shows is a sketched
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representation of the proposed pipeline. The third step of the pipeline,
explained in details in Section 6.2, takes as input the topology of the poly-
cube and, using a queue-based sweeping algorithm, outputs its partition in
orthogonal parallelepipeds. The fourth step (Section 6.3) maps back each
parallelepiped found in the previous step to parts of the original model. It
is not possible to use a simple mapping since it would not produce the flat
surfaces we need. Thus, the boxes are used as parameters for intersections
with the original shape. The final result is manually evaluated to verify if
one or more parallelepipeds needs further partitioning step.

6.2 Polycube partitioning

As shown in the inset on the left, in the poly-
cube, a corner is a vertex with at least three
adjacent triangles (or faces) having three dif-
ferent normals and an edge is the shortest
rectilinear path of triangle edges that connect
two corners. A facet is a closed chain of edges
and corners containing a set of triangles with
the same normal. For the following steps, the
triangle mesh structure can be ignored, focus-

ing only on the elements as mentioned above.

The primary step of the pipeline is the decomposition of the poly-
cube in orthogonal parallelepipeds. The idea that every concave edge
in the polycube defines a partial decomposition of the model is followed.
Since every edge is axis-aligned, it lies at the intersection two planes
parallel to xy, yz or zx. By construction, the two planes are orthogonal.
The intersections between the two planes and the polycube induce the
partial decomposition mentioned before. Iterating the decompositions
obtained visiting all the concave edges allows obtaining a decomposition
in orthogonal parallelepipeds of the input polycube.

Firstly, it necessary to make sure that each corner coordinates is
rounded to integer values. In this way, by fitting the polycube into an
integer lattice, it is simple to create a uniform discrete grid inside the
polycube. By applying a sweep line algorithm along all the three axes
the lattice is split at every concave edge. In Figure 6.2, for the sake of
compactness, both steps are represented as they were only one pass; notice
that the concave edges are evidenced by marking the explementary convex
angles.

This method works fine for all polycubes except for self-intersecting
ones. In the carried out experiments, however, it never happened any case
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Figure 6.2: The space sweeping partitioning of the polycube. A step in
the direction marked by the arrow (top-down) is depicted: any time one or
more edges delimiting an internal concave angle (in red the explementary
convex angles) are encountered the polycube complex is split.

of self-intersection, confirming the intuition that those cases should be
extremely rare in the class of polycubes that is relevant in this practical
scenario.

The cutting planes can now be computed. The reverse mapping, from
polycube back to the original shape, is applied only to each part’s corner.
The tetrahedral version of the original shape and the polycube are used
for the mapping. For each corner P (x, y, z) on the surface of the part,
it is required to determine in which tetrahedron of the polycube it lies.
This operation is performed by indexing them by using an octree, and
expressing its position in barycentric coordinates: ω0, ω1, ω2, ω3. The
new corner position P ′ is now computed by applying these barycentric
coordinates to the tetrahedron in the original model. If A,B,C,D are the
vertices of the chosen tetrahedron, then P ′ = ω0 ·A+ω1 ·B+ω2 ·C+ω3 ·D.
The computational complexity is O(nc · log(nt)), where nc is the number
of corners in the polycube portions and nt is the number of tetrahedra in
the original model.

In this way, a set of eight vertices for each internal parallelepiped of the
polycube is identified. It is now possible, for each quadruple of vertices on
a face of the parallelepiped, to compute the plane that better approximate
them and, repeating it for all the internal parts, obtain the set of cutting
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planes. The following section explains this step.

6.3 Cutting planes

To be able to fabricate each part of the decomposed model, as it will be
evident in the next section, it is beneficial for 3D printing, and mandatory
for 3-axis milling having at least one side planar. The word side here
means the set of triangles mapped from one facet of a parallelepiped.
It’s worth to remind that in polycube space, since each component is an
orthogonal parallelepiped, each face is a planar rectangle.

To map back the parallelepiped in R3, the inverse function of the
projection in polycube space is used. This inverse function only rarely
maps a rectangle onto a planar portion of the surface: almost always the
four vertices of the rectangle do not lie on a plane. Thus, the position of
these four vertices are modified, so that they will lie on a plane. This step
is called flattening.

It is not possible to change the position of the mesh vertices on the
original surface of the input shape, of course, since a deformation of the
input shape is not an appreciated result. To reach this goal, an iterative
method that works inR3 is used, taking advantage of the polycube topology
and, thus, in the following, the term side is used instead of facet for making
this clear. It works as follows, using only a queue Q as the data structure
to support the process:

1. Pick an external side of the model;

2. Check if one or more of the other five sides of the same parallelepiped
are internal sides ;

3. Put all the internal sides found in Q;

4. Take the first side in Q, say f , flatten it and remove it from Q;

5. Move to the parallelepiped incident on f not already visited and go
to step 2;

The process ends when all the cubes have been visited and Q is empty.

6.3.1 Side flattening

Different approaches are used to flatten a side, depending on how many
vertices are free to move.
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Figure 6.3: From left to right and top to bottom, the whole process of
flattening is shown. The vertices to be moved are the ones marked in
yellow rhombus, once fixed they are marked with a yellow square.
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If all the four vertices are free to move (e.g., for the very first side to
flatten) a least square method is applied to find the best fitting plane, and
the four vertices are projected on it. There are two more possible cases:
(i) two vertices can move only on a given plane; (ii) one vertex can move
only on a given line. In both cases, the solution is straightforward. Finally,
consider that when sides adjacent to already planar ones are flattened,
since it is not possible to move the edge in common, it is used as a pivot
and allows the other two vertices only lay on a plane passing through the
pivot. In Figure 6.3, the whole process on a simple example is illustrated.
For simplicity, it is in polycube space.

6.4 Final decomposition

The last step is the definition of the geometry of each part of the partition,
in order to proceed to the fabrication feasibility analysis. To perform this
refinement, the exact boolean operations has been used, as described by
Zhou et al. in [ZGZJ16], which permit to obtain the surface mesh resulting
from a boolean operation (intersection, union, difference) of two surface
meshes. The final geometry of the part is obtained by performing an
intersection between the surface extracted from the input triangle mesh
and a box enclosing the part. The boundaries of the enclosing box are
given by the cutting planes of the part and the bounding box of the whole
mesh.

If the cut results in more than one connected component, only the
component containing the four vertices generating the cutting plane is
selected, and the other cuts are ignored. Each portion stems from a single
orthogonal parallelepiped of the polycube, and therefore it can be trivially
split, if necessary, by using an appropriate axis-aligned plane that will map
back onto the original shape. The result of this final step is a partition
consisting of a set of triangle meshes.

6.5 Feasibility checking for fabrication

6.5.1 3D printing support control

Each piece of the resulting partition can be fabricated with a 3D printer,
since the chamber size is used as a control in the last step. The focus of
the feasibility check is on the usage of supports.

The proposed algorithm is guaranteed to generate a set of pieces having
from one to six flat polygonal facets. For each piece, all the possible printing
directions (one to six), given by its bounding cutting planes, are checked,
and the printing orientation that gives the best results in terms of needed
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supports is selected. The best orientation is the one with less surface
triangles exceeding the overhang angle of the 3D printer. Since the number
of cutting planes bounding a piece is at most six, the overall complexity of
the check is linear with respect to the triangles number of the piece. The
next section analyzes the results.

Notice that, as stated in Section 6.4, with the proposed algorithm, a
piece can be split with a new cutting plane if the volume of the part exceeds
the chamber size. This operation permits also to avoid any outer supports
iterating this split step until having only parts not needing supports. Whit
this splitting, a new flat base is added to each of the two new pieces (one of
them has already a flat face), allowing to choose a new printing direction
for both pieces.

6.5.2 3-axis milling checking

While for 3D printing it is possible to guarantee results, for milling it is
only possible to perform a check on the obtained decomposition to verify
the fabrication feasibility. Two different checkers are devised, which allows
to state if a block can be manufactured with both 3- and 4-axis machinery.
The 3-axis milling checker is very simple: it just checks if a piece of our
decomposition is a height-field. The milling direction is orthogonal to one
of the cutting planes, and, again, at most, this check is performed six times
per piece. The piece is oriented in all its possible milling directions and,
for every orientation it is checked if it has triangles having normal with an
angle greater than 90◦ for the milling direction. All the triangles which
belong to the polygonal base generated by the selected cutting plane are
excluded from the check step.

6.5.3 4-axis milling checking

This section introduces a method for checking if an individual part of an
object can be feasibly machined with a 4-axis milling machine.
One of the main challenges for the
fabrication of an object with a 4-axis
milling machine is the identification
of the rotation axis. This problem
has been achieved by [HF17], but they
focus the study mostly on mechani-
cal and very regular objects with a
low number of triangles, emphasizing
that the computational effort dramat-
ically increases if the visibility resolu-
tion raises. The proposed subdivision
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approach focus on free-form geometries and, thus, the more reasonable
solution is to leave the user to choose the rotation axis, assisted by an
automatic initial orientation of the model. The suggested orientation is
derived, as explained in [MLS∗18], maximizing the alignment between the
global axes and the face normals of the shape. As shown by [MLS∗18],
since this method is a heuristic it can fail. As it is evident in the inset on
the right, the rotation axes automatically detected for BU (left) is skewed
while the manual choice of taking the vertical line passing through the
center of the base (right) is the correct one. Therefore, a tool that allows
the user to adjust the orientation, if he deems it is necessary, is provided.
This is the only user-controlled step of this checker.

A surface can be (theoretically, see the end of section) manufactured
using a 4-axis milling machine if the milling tool can reach every surface
point considering all the possible rotations of the model along the selected
rotation axis. Since all the possible rotations along the 4th axis are infinite,
once the rotation axis is chosen, it is possible to sample with a small
set of angles that generates a family of planes which intersect each other
along the selected axis. Then, for each triangle and at every rotation of
the model, a ray orthogonal to the plane associated to the i -th rotation
and passing through the barycenter of the triangle is traced. If the ray
intersects more than one triangle, the farthest away from the plane is
marked as visible from the milling tool and, therefore, millable in the
present orientation.

Figure 6.4: Three main possible cases of ray-triangle intersection.

As it is clear from Figure 6.4, three primary cases can present:

• In case (a) the ray traverses only one triangle.

• In case (b) the ray traverses a whole portion of the shape and two
triangles (one front-facing and one back-facing the milling tool).

• Case (c) is an example of summation of both previous cases, that
can sum up even more; in all these cases the ray traverses three or
more triangles.
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In the two cases sketched in Figure 6.4(b) and in Figure 6.4(c), a
triangle belonging to the surface and not directly reachable by the milling
tool is present. If this happens, it is needed to verify if for some rotation
angle the triangle could be visible. Is is not possible to mill all the triangles
never visible. In this case it is possible to change the axis, or remove the
triangles from the surface, filling the holes with a mesh repair tool.

Checking the visibility of the barycenter is an approximation. If the
barycenter is visible, it does not guarantee that the entire triangle is visible
from the milling tool. However, this approximation is good enough for
the purposes of this work, because in the worst case precision for portions
of triangles is lost. In the carried out experiments, these problems never
appear. The checker has been tested with oversampled meshes (keeping the
same geometry but doubling or tripling the number of triangles), resulting
with the same percentages of samples visible/not visible, with minimal
differences (less than 0.1%).

As mentioned before, the selection of the rotation axis is user-assisted.
The sampling number is an input parameter. In the reported experiments
(the results are in Table 6.2) forty rotation planes uniformly distributed in
the interval [0, 2π) have been used.

The whole checking process does not take into account some practical
details like the thickness and the height of the milling tool. They depend
on the machine used for the manufacturing process. Even if these are
essential aspects for the real feasibility of the fabrication of the pieces,
they can be integrated into the checker using a configuration left to future
extensions.

6.6 Results and analysis

The proposed pipeline has been applied to an extensive set of models,
having different characteristics in term of details and complexity. A gallery
of results is shown in Figure 6.5. Other peculiar or fabricated results are
reported and commented separately in this section.

The polycube of each model is an input for the proposed pipeline and,
thus, to make their production process clear, in Table 6.1 are reported, for
each model, the compactness factor used to compute these polycubes with
Polycut, with the number of resulting orthogonal parallelepipeds. The
number of parallelepipeds in the polycube is the number of parts of the
decomposition since any kind of merging post-processing step is not used.
The timing for the cutting planes calculation is not reported because they
are negligible (always less than a second).
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Model
Polycube

Parts
compactness

Angel 5 4
Bird 4 5
Bu 9 9
Dea 7 4
Duck 5 5
Fandisk 4 50
Hole3 3 18
Max Plank 7 3
Moai 3 9
Ramses 9 9
Sphinx 10 6
Squirrel 3 4

Table 6.1: Results of the polycube computation on the models shown in
in this chapter. The polycubes structure is optimizes with the algorithm
presented in Chapter 3. The second column lists the compactness values
of the polycubes.

Also the timing for polycube computation and for the generation of the
pieces using exact boolean operations are not reported, since external tools
are used for these steps. To give an idea of the order of magnitude, the
computation of the polycube map never exceeds three minutes, and boolean
operations always stay under one minute, for all models except for Fandisk.
The longest step of the whole pipeline is the polycube computation, that is
a pre-processing step. The entire timing is not a problem when compared
to the fabrication time.

It is not possible to assure that the resultant partition is optimal
in term of the number of parts, but it is unquestionably easy and fast
to compute. In this chapter, of course, it is not proposed an absolute
improvement of the results in [LBRM12], but just a suggestion of how it
can be possible to partition a mesh for fabrication purposes with a simple
method controlled by the user, and using just one parameter in the whole
pipeline (the polycube compactness). The proposed subdivision pipeline
gives excellent results in efficiency.

The compactness of the polycube influences the final decomposition.
The polycube simplification algorithm described in Chapter 3 has been
used to reduce the number of small and not semantically relevant pieces.
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Figure 6.5: A gallery of decompositions obtained with the proposed
polycube-based pipeline. For each model, on the left the whole partitioned
model, and, on the right, its exploded view. Captions in the figure and
Table 6.1 show the number of pieces in the decomposition.
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Model %3DPST BID %3DPPS %3DPPST %3AM %4AM

Angel 4.6
0 0.0

0.0
13.7 0.0

1 0.0 41.2 0.1
2 0.0 17.7 0.0
3 0.0 22.0 0.0

Bird 32.0

0 0.0

0.0

45.3 0.0
1 0.0 2.9 0.0
2 0.0 44.7 0.0
3 0.0 16.6 0.0
4 0.0 44.8 0.0

Bu 11.8

0 17.8

10.1

47.5 0.0
1 5.0 16.9 0.0
2 5.3 32.7 0.1
3 5.9 28.8 0.0
4 1.8 36.1 0.0
5 1.5 48.0 0.1
6 2.9 12.7 0.1
7 4.6 9.4 0.0
8 3.9 11.6 0.0

Dea 11.7
0 0.0

0.06
39.6 0.1

1 0.0 0.9 0.0
2 0.1 36.7 0.3
3 0.0 0.3 0.0

Duck 14.5

0 3.0

0.7

37.9 0.0
1 0.0 32.5 0.0
2 0.0 0.4 0.0
3 0.0 14.1 0.0
4 0.0 23.4 0.0

Max Plank 21.7
0 0.0

0.0
6.2 0.0

1 0.0 32.6 0.0
2 0.0 31.2 0.0

Moai 6.0

0 0.0

0.1

11.6 0.0
1 0.0 21.3 0.0
2 0.0 1.8 0.0
3 0.0 28.8 0.0
4 0.5 23.9 0.0
5 0.0 26.2 0.0
6 0.0 19.8 0.0
7 0.0 7.1 0.5
8 0.0 30.0 2.4

Ramses 3.0

0 1.7

1.8

48.2 0.0
1 0.0 16.6 0.0
2 0.6 16.4 0.0
3 4.3 23.4 0.0
4 0.0 23.4 0.0
5 1.4 34.0 0.0
6 0.6 36.9 0.0
7 3.0 28.8 0.0
8 0.0 20.7 0.0

Sphynx 9.8

0 0.0

0.2

29.4 0.9
1 0.0 29.9 0.0
2 0.5 30.9 0.1
3 0.0 37.7 0.4
4 0.0 12.6 0.0
5 0.0 24.3 0.0

Squirrel 9.8
0 0.0

0.0
30.1 0.6

1 0.0 29.6 1.2
2 0.0 6.9 0.0
3 0.0 23.7 0.0

Table 6.2: Fabricability of most of the models listed in Table 6.1. Column labels have
the following meanings: percentage of surface covered by supports if the entire model is
printed (%3DPST); block identifier (BID); percentage of surface covered by supports for
each piece (%3DPPS); percentage of surface covered by supports on the entire subdivided
model (%3DPPST); percentage of surface not visible from the machine tool during the 3-
axis machining (%3AM); percentage of samples not visible from the machine tool during
the 4-axis machining (%4AM).
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6.6.1 Partitioning in additive manufacturing

Since the partitioning allows the complete model to be larger than the
printing chamber, with the proposed pipeline, it is possible to print almost
any free-form shape, using supports to handle overhanging features. For
every part of the partition, the surface percentage needing support during
the fabrication is analyzed. The base for the printing is the flat face
giving the lowest percentage. The results are canalized by comparing the
percentage of the surface of the whole mesh needing supports with the
percentage of surface needing supports in the decomposition (Table 6.2,
columns %3DPST and %3DPPST ). This decomposition allows fabricating
the final model, guaranteeing to have less percentage of surface needing
support. Additionally, since the seams between pieces are planar, it
is possible to guarantee that the matching areas are as regular as the
production process allows, and, therefore, the parts accurately match
during the assembly step.

6.6.2 Partitioning in subtractive manufacturing

Subtractive technologies impose stricter constraints on the model shape.
For 3-axis fabrication, the proposed polycube-based decomposition does
not always produce a suitable partition. Even in presence of flat faces, it
is not possible to guarantee that the pieces are height-fields. Testing the
3-axis milling checker introduced in Section 6.5.2 on the shown results, it is
clear that the height-field constraint is too hard to respect without taking
into account specific precautions during the decomposition. As pointed out
in Table 6.2 (column %3AM ), only five pieces of the decompositions (two
belonging to the same model) have tiny percentages of surface that cannot
be reached by the milling tool because occluded (less than 3%). These
pieces can be manufactured using 3-axis milling machines, at the cost of
losing the details of the occluded parts and, in some cases, introducing
discontinuities between adjacent blocks if the occlusion involves one of
the flat faces of the block. However, no pieces of the decompositions are
strictly height-fields, and none of the presented results is composed only
by pieces with negligible percentages of non-millable surface. This is a
clear limitation of the presented method.

Two results obtained with this pipeline are compared to [MLS∗18] in
Figure 6.6. The proposed method guarantees a regular decomposition in-
herited from the polycube partitioning, where every block can be produced
with 4 axis milling machines or 3D-printed without supporting structures.
On the other hand, the method proposed in [MLS∗18] guarantees blocks
that can be milled using 3 axis milling machines.
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Figure 6.6: Decompositions of Dea and Bu models obtained with the the
method of [MLS∗18] (left) and with the method proposed in this chapter
(right).

The use of 4-axis machines allows for more flexible constraints, but it
requires to identify first the rotation axis. Using the checking procedure
described in Section 6.5 it is possible to demonstrate the feasibility of
almost all the parts obtained from the experimented models. The results
show that the machining tool cannot reach only a limited percentage of
the surface (Table 6.2, column %4AM ). In Figure 6.7, the chosen axes that
would guarantee the fabrication of each piece of the Duck model are shown
(notice that this model cannot be fabricated with the 3-axis technology).

All the shown results use the hypothesis of an ideal machining tool
of indefinite length and infinite narrow size. Should one manufacture the
parts, it would require to revise the checking procedure to take in account
size, length, and shape of the tool. The change would not substantially
modify the results.
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Figure 6.7: The five parts of the Duck model decomposition, all with at
least one flat face. The red cylinder is the rotation axis used for the 4-axis
milling.

6.6.3 3D printing examples

Five of the computed decompositions have been fabricated by using addi-
tive manufacturing: Duck, Sphinx, Angel, Max Plank, and Squirrel. These
models have different polycube mappings, all very simple, and they decom-
pose, respectively into five, six, four, four, and three pieces (see Fires 6.1,
6.5 and 6.8, for the decompositions). Figure 6.9 shows photos of Max
Planck with the total height (24.5 cm). The chamber of the used 3D
printer, a Flashforge Creator Pro, is 227 × 148 × 150 mm, and thus it
could not be possible to print the model in this size without decomposing
it. Furthermore, note that a large number of external supports would have
been necessary to fabricate this model without partition it. Photos of the
models of the Duck and Angel are in Figure 6.10.

Figure 6.8: The Sphinx model, from left to right: the polycube mapping;
the partitioned model; the exploded set of parts; the ABS model.
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Figure 6.9: The Max Planck model fabricated. The three separated parts
on the left, and the assembled model on the right.

Figure 6.10: The models of Duck and Angel. On the top left the five
printed parts of the Duck, and on the top right two views of the assembled
model. On the bottom left the four parts of the Angel, and on the bottom
right the assembled model.
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6.7 Limitations

The polycube-based partitioning is not well suited when used to decom-
pose models with large almost flat not orthogonal surfaces. The Fandisk
model, for instance, is quite regular and straightforward but, due to its
geometric features, decomposes in 50 portions (see Figure 6.11 left). This
characteristic is a drawback when compared to pure semantical approaches.
As an example, a manual segmentation can easily partition the fandisk
in much fewer portions. But the fully automatic pipeline still makes the
proposed approach advantageous on models without these characteristics.
Since optimized polycubes are used, it is possible to decompose in as few
parts as possible, but some small pieces can still be produced, as one can
notice in the Ramses model of Figure 6.5.

Another limitation of this pipeline is its application to models like
the Hole3 one. This model has genus three and is an elementary CSG
object that a human could easily split into two parts with flat bases
which would print with no supports. The proposed algorithm decomposes
it in eighteen pieces (see Figure 6.11 right) because each hole induces
additional partitions in polycube space. Theoretically, the compactness
of the polycube can be reduced to one single cube but only for objects of
genus zero. When the genus is higher than zero, the theoretical limitations
do not allow a compact subdivision. Note that this is the same problem
highlighted in the limitations of the polycube simplification approach
presented in Chapter 3.

Figure 6.11: The Fandisk model decomposed in fifty parts (left) and the
Hole3 model decomposed in eighteen parts (right).

Technical information

The Cinolib library [Liv17] has been used to store and process the 3D
models and polycubes. The CGAL library [CGA18] has been used to
implement some functions of the tool described in 6.5, LibIGL [JP17]
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for performing the boolean operations, and CG3Lib [MN∗18] for basic
algorithms and data structures. The Tetwild [HZG∗18] generators has been
used to turn tri-meshes into tet-meshes and the Polycut algorithm [LVS∗13]
to generate all the polycubes shown in the chapter. See Appendix A for
more details.
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Chapter 7

Conclusions

After a brief introduction to the polycube world (see Chapter 1), three
main works have been presented in this thesis. The goal of the projects
described in this manuscript was to optimize the polycube structure in
order for it to be used in different application fields, from the digital world
of 3D models to the more concrete one of fabrication.

In Chapter 3, a novel method for the simplification of a polycube
structure has been presented. The proposed method is very fast, it can be
easily inserted in a re-meshing pipeline, and it needs a single parameter
(λ) that allows to choose the balance between alignment and shape fidelity.
This approach is meant to be plugged into the state-of-the-art pipeline
used to re-mesh shapes represented by triangle meshes into quadrilateral
meshes (in case of surfaces), or ones represented by tetrahedral meshes
into hexahedral meshes (in case of volumes). The simplification is per-
formed in polycube space, by optimal alignment of polycube corners in
an integer lattice. The proposed approach overcomes previous limitations
in polycube-based meshing, making the process independent from the
sampling resolution and generating structured meshes with a lower number
of domains. The results shown in Section 3.6 demonstrate that, with the
proposed simplification approach, it is possible to reduce the complexity of
the input polycube with a factor ranging from 25% to 70%. Furthermore,
the proposed extra step in the classical meshing pipeline requires negligible
time to be performed.

In Chapter 4, a novel pipeline for the generation of high-quality hex-
ahedral meshes has been introduced, in which the quality measure of a
hexahedron refers to a deviation from the perfect cube. The proposed
pipeline utilizes a polycube mapping for decomposing the input domain
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into portions which are simple to discretize into a hexahedral mesh. It
needs a single parameter to be set: the λ value to balance between the
number of new elements and the number of new singularities. In this
pipeline, the main contribution is a selective padding strategy which auto-
matically adds sheets of hexahedra only where they are needed, in order to
increase the global quality of the output hexahedral meshes. These sheets
can form turns inside the domain, which induce extra edge and vertex sin-
gularities. Compared to global padding or greedy straight sheet insertion,
the proposed approach improves the global quality while generating fewer
hexahedra. It works at its best when applied to input domains bounded
by a piecewise planar surface, which is typical of mechanical parts. As it is
clear from the results shown in Section 4.5, the proposed selective padding
allows to obtain a substantial quality improvement of the hex-mesh quality,
concerning both minimum and average Scaled Jacobian.

In Chapter 6, a simple and effective polycube-based decomposition
scheme has been presented. It is able to manipulate digital shapes, and
partition them in view of their fabrication. The proposed method allows
fabricating any shape using any kind of 3D printer. It also includes two
checking procedures that allow to verify if the decomposition is suitable
for 3-axis and 4-axis milling machining. As Section 6.6 shows, this simple
subdivision scheme allows the models to be printed while also guaranteeing
to have less percentage of surface needing supports. From the machining
point of view, the proposed decomposition is suitable for 4-axis milling
machines, as it is clear from Table 6.2, while it is not for 3-axis ones, as
the height-fields condition requires stricter constraints. A set of fabricated
models, in the same section, shows the quality of the proposed subdivision.

7.1 Future works

Several improvements are possible for the works presented in this thesis.
In the field of the simplification of polycube structures, we are already
working on an advanced semantic simplification scheme of the polycube,
with the aim to simplify it by removing “useless” cuboids in the subdivision.
In particular, looking at Figure 3.14 in the last paragraph of Section 3.7,
it is evident that the domains number induced by the polycube structure
is sometimes higher than the one obtained with other meshing approaches.
With this new work, we aim to remove the four volumetric domains at
the four ends of the subdivision shown in Figure 3.14, without giving up
the use of polycubes in the hex-meshing pipeline. Another interesting
topic to further study and investigate is a new strategy to compute the
pairs of corners to align. Notice that, even if the Voronoi-based heuristic
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is replaced with another method, the full mathematical model set in this
thesis continues to work.

Talking about the selective padding proposed approach, we plan to
explore an automatic parameter selection approach, in order to find the
best balance between quality and complexity. We also wish to explore a
global optimization approach to select the optimal set of constrained facets
that yields the maximum quality. We then intend to analyze whether a
combination of padding and inverse padding (removing hexahedral layers
from the mesh) can provide better results. Furthermore, we plan to extend
our approach to more general polycube-based hex-mesh structures, like
those used by Fang et al. [FXBH16].

Moving on to the fabrication field, we plan to improve the presented
subdivision scheme in many ways. The first improvement is related to
fabrication with 3-axis machines. We always produce parts with a flat
base but only this property is not sufficient to guarantee that the parts
are height-fields. A solution to this problem could be splitting the not
height-field portions into sub-portions, using cutting planes. The choice
of appropriate planes would lead to splitting a part into height-fields.
The iterative application of the splitting step would produce an entirely
fabricable set of portions. The optimal choice of cutting planes and the
demonstration of the termination of the iterative method, apart from
trivial solutions, are open issues. Another interesting topic to further
investigate is a post-processing step to reduce the number of portions. A
strategy to face this problem passes through the merging of adjacent pieces
into clusters. This step would not be trivial, as we would have to apply
the right constraints to maintain the partition suitable for fabrication.
The constraints are: size, since it is necessary to avoid generating clusters
greater than the printing chamber, and shape, to prevent the increase of
supports and to make sure that milling constraints are still satisfied.
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Appendix A

Technologies

This appendix introduces the technologies used for the works described in
Chapters 3, 4 and 6.

The Cinolib library [Liv17], used as data structure to store models
and polycubes, is a generic programming header-only C++ library for
processing polygonal and polyhedral meshes. It contains different data
structures for different kind of meshes (structured, unstructured and mixed
surfaces and volumes) and several algorithms for their manipulation.

Other geometry processing libraries have been used to manipulate
models and polycubes. The first one, CGAL [CGA18], is one of the most
famous software projects that provides efficient and reliable geometric
algorithms in the form of a C++ library. The second one, Libigl [JP17],
is a C++ library of geometry processing algorithms designed for and by
researchers. It includes construction of common sparse discrete differ-
ential geometry operators, simple facet- and edge-based topology data
structures, mesh-viewing utilities for OpenGL and GLSL, and many core
functions for matrix manipulation. In particular, this library has been
used in Chapter 6 for the boolean operations between meshes. Finally, for
minor operations, the Cg3Lib library [MN∗18] has been used. It is a C++
geometry processing library developed by our team (the CG3HCI Group
of the University of Cagliari). It is composed of different data structures
and a collection of geometry processing and computational geometry algo-
rithms, and it provides simple interfaces with the most famous geometry
processing libraries like CGAL, Libigl, Cinolib, etc.

TheGurobi Optimizer [Gur], used as numerical solver for the described
mathematical models, is a state-of-the-art solver for mathematical pro-
gramming. The solvers in the Gurobi Optimizer has been designed by using
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the most advanced implementations of the latest algorithms. It includes
the following solvers: linear programming solver (LP), mixed-integer linear
programming solver (MILP), mixed-integer quadratic programming solver
(MIQP), quadratic programming solver (QP), quadratically constrained
programming solver (QCP) and mixed-integer quadratically constrained
programming solver (MIQCP). It supports interfaces for a variety of pro-
gramming and modeling languages, like C++, java, python, C, Matlab,
etc., and it provides a simple way to construct a mathematical model.
According to the set objective function and the imposed constraints, it
decides the most appropriate algorithm to solve the model.

The Voro++ library [Ryc09], used in Chapter 3, is a software library
for the three-dimensional computation of the Voronoi tessellation. It is
written in object-oriented C++, allowing it to be easily modified and
incorporated into other programs. It can carry out calculations by using a
mix of periodic and non-periodic boundary conditions, and it has a general
class mechanism for handling different types of walls.

Two tet-mesh generators have been used in the works composing
this thesis. The first one is Tetgen [Si15]. It is a software to generate
tetrahedral meshes of any 3D polyhedral domains, generating the exact
constrained Delaunay tetrahedralization, boundary conforming Delaunay
mesh, and Voronoi partitions of an input object. Tetgen is written in C++
and it provides various features to generate good quality and adaptive
tetrahedral meshes suitable for numerical methods, such as finite element
or finite volume methods.

In the second part of this thesis, another tet-mesh generator has been
used together with Tetgen: Tetwild [HZG∗18]. It is a new tetrahedral
mesh generator that is extremely robust, without user interaction required,
that allows the directly conversion of a triangle soup into an analysis-ready
volumetric mesh. Compared to the previous one, it allows obtaining more
homogeneous tet-meshes (in terms of tetrahedra dimension) without set-
ting any parameters.

The PolyCut algorithm [LVS∗13] has been used for the polycubes
generation (see Section 1.2 for more information). Moreover, the hex-

mesh optimizer proposed in [LSVT15] has been used for the optimization
of all the hex-meshes presented in this thesis. It is a robust framework
for optimizing the hex-mesh quality, capable of generating high-quality
meshes, without inverted elements, from poor-quality initial input shapes.
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