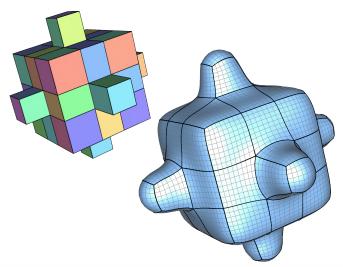
Polycube Simplification for Coarse Layouts of Surfaces and Volumes

G. Cherchi¹, M. Livesu², R. Scateni¹

¹ University of Cagliari, Italy
Department of Mathematics and Computer Science

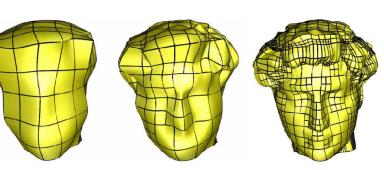
² CNR IMATI, Genoa, Italy Institute for Applied Mathematics and Information Technologies



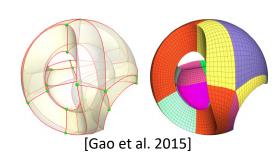
Berlin, June 20-24th

Singularities alignment

- Having a good singularities alignment is important in a number of applications:
 - High quality hex-meshes for simulation
 - High quality quad-meshes for animation
 - Higher order-meshing
 - Benefits for memory requirements
 - Benefits for performance speedup

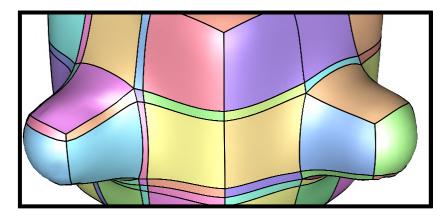


[Li et al. 2013]

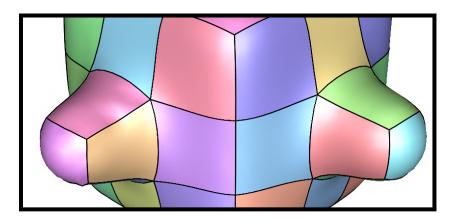


The singularity misalignment problem

- ► Meshes with singularity misalignments → poor structure
- Meshes without singularity misalignments → good structure



The "nearly miss" problem



Aligned singularities

How can we solve the singularity misalignment problem?

State of the art

On volumes:

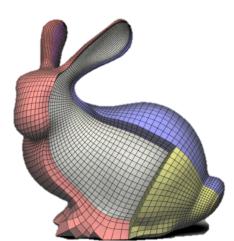
▶ Iterative collapse of hexahedral sheets in the base-complex (Gao et

al. $2015)^1$

Slow in some cases

User-designed harmonic function
 al. 2015)²

Often too coarse, user assisted



²[Gao et al. 2015]

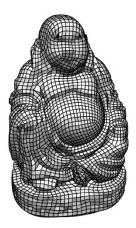
¹[Gao et al. 2015]

State of the art

- On surfaces:
 - ► Greedy approach using a graph of the separatrices of the mesh (Tarini et

al. 2011)

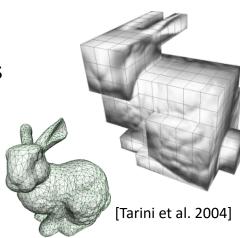
User assisted approaches

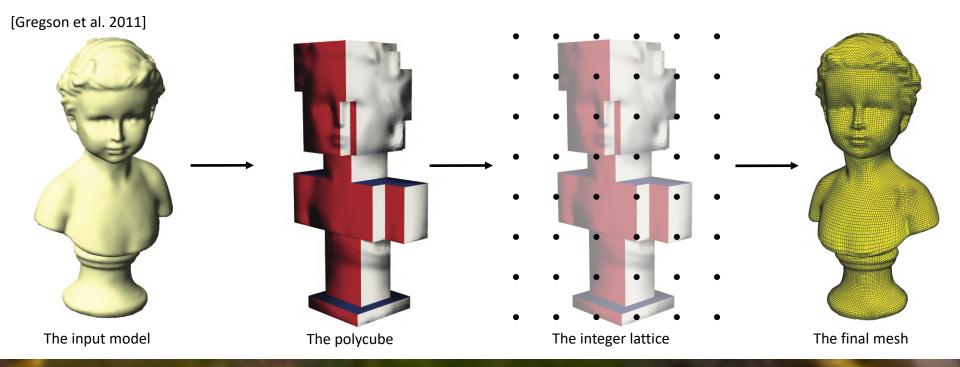


[Tarini et al. 2011]

Polycubes

- ► Shapes transformed into a collection of connected cuboids
- Cuboid turned into mesh via gridding

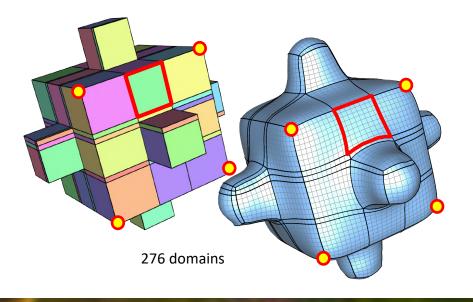


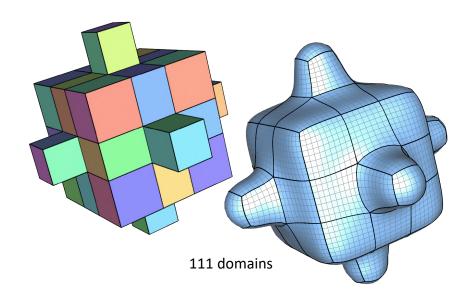


Polycube to mesh

- ► The polycube shape defines the structure of the final mesh
- Polycube corners are mesh singularities
- Polycube edges define the final base-complex

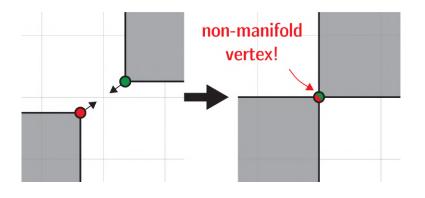
Corners alignment influences the base-complex of the final mesh



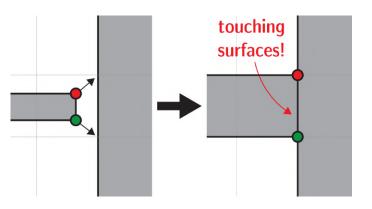


First problem

- Polycube in an integer lattice
- ► Topological inconsistencies



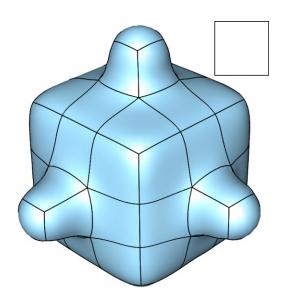
two corners map the same integer location

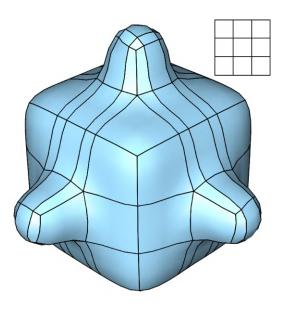


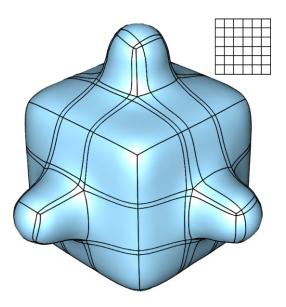
overlap between portions of the polycube

Second problem

- Polycube in an integer lattice
- Different lattice densities generate different mesh structures

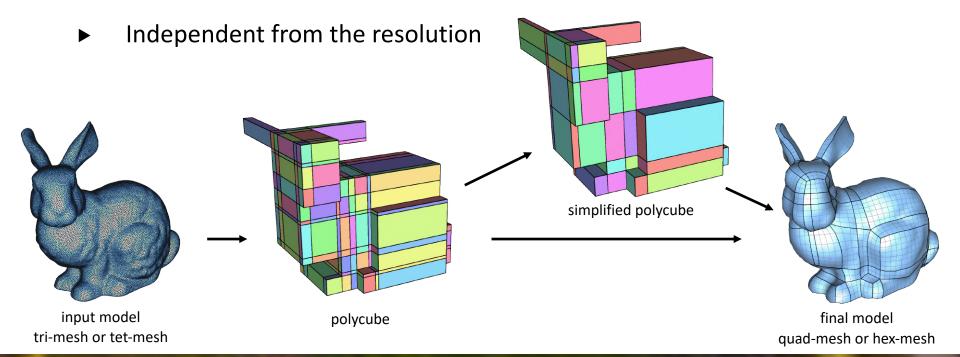






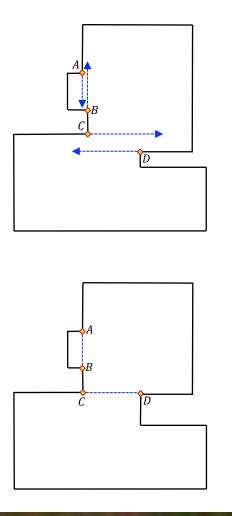
A new meshing pipeline

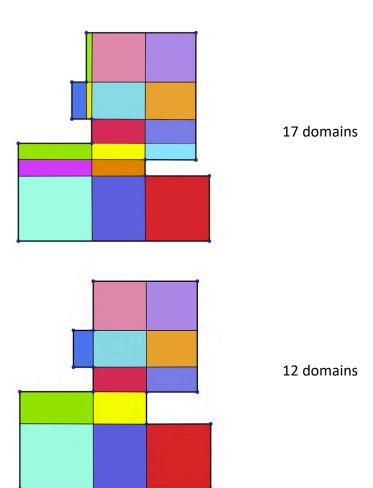
- A new step in the meshing pipeline:
 - Optimize the corners' position in the integer lattice
 - Optimize the base-complex decomposition
 - Avoid topological inconsistencies



Our idea

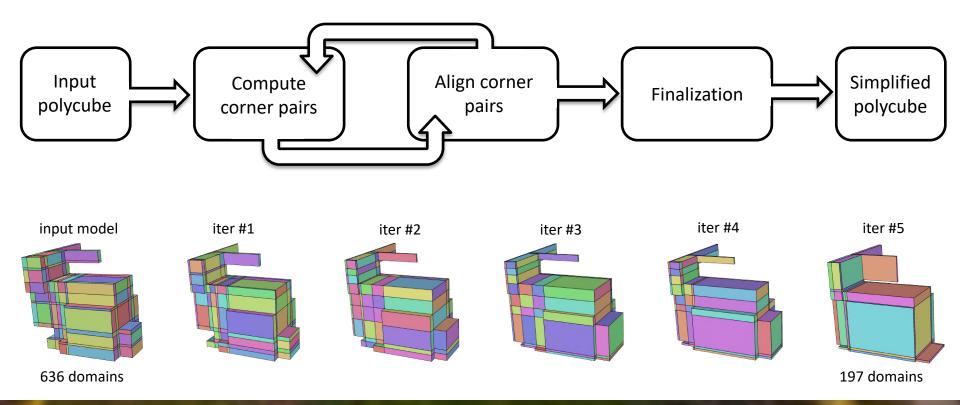
Corner alignment





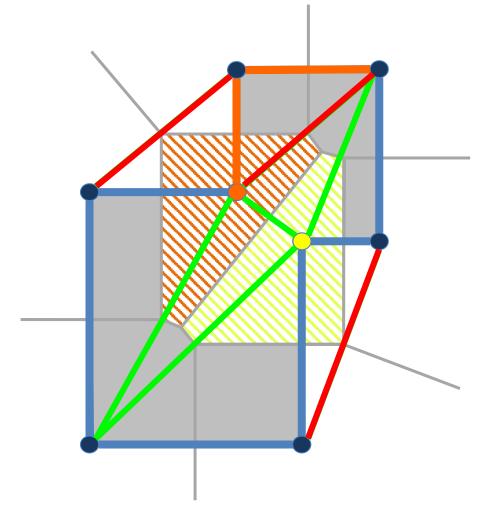
The proposed method

- Concise and iterative method:
 - Compute corner pairs
 - ► Align corner pairs



Corner pairing

- Voronoi based heuristic to find corner pairs (set A)
- Pruning of the graph of adjacencies
 - end-points of the same edge
 - end-points of adjacent edges
 - external adjacencies
- Splitting of A in A_x , A_y and A_z



Corner alignment

- A mathematical model
- Integer variables
- ► The objective function

$$\min_{s.t.} E = E_{align}(A) + \lambda \cdot E_{shape}$$

$$structural \ constraints$$

$$E_{align} = \sum_{(c,c')\in A_x} (c_x - c'_x)^2 + \sum_{(c,c')\in A_y} (c_y - c'_y)^2 + \sum_{(c,c')\in A_z} (c_z - c'_z)^2$$

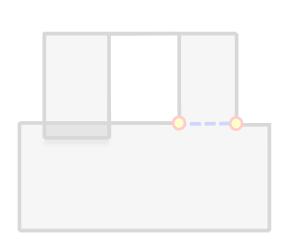
$$\left[E_{shape} = \sum_{c} \|c - \tilde{c}\|^2\right]$$

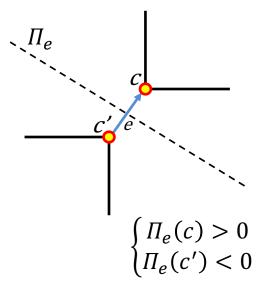
$$\lambda$$
 = scaling factor

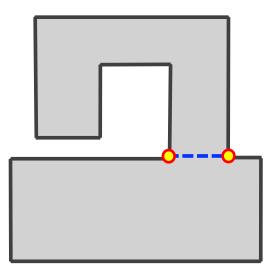
Structural constraints

- ► A set of **linear** constraints:
 - Collinearity of end-points
 - Avoid edge collapse (length >= 1)
 - Avoid corner collapse
 - Dummy vertices and edges



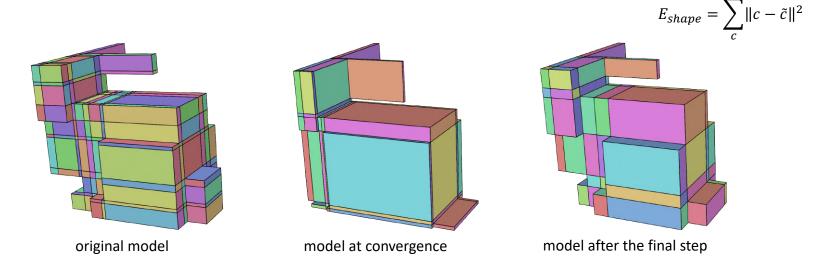




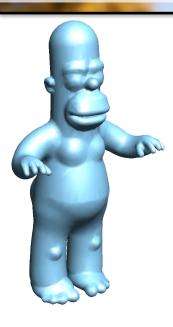


Finalization

Final simplification step ($min E = E_{shape}$)



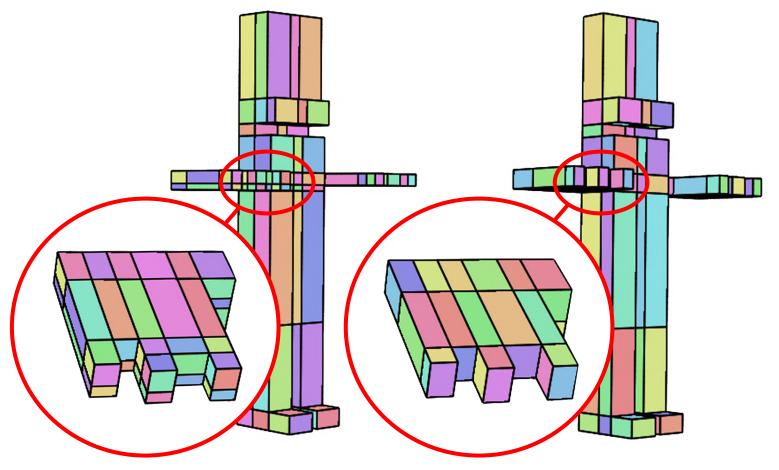
- We fit the input polycube into our simplified structure solving a simple Laplacian problem $\nabla P=0$
 - For surfaces we use the cotangent weights
 - ▶ For volumes we use the 3D mean value coordinates (Floater et al. 2005)



INPUT: 260 dom **OUTPUT:** 202 dom

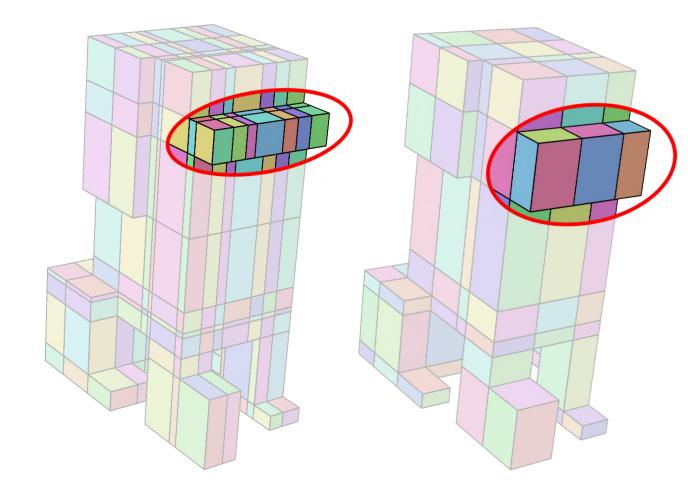
GAIN: 22%

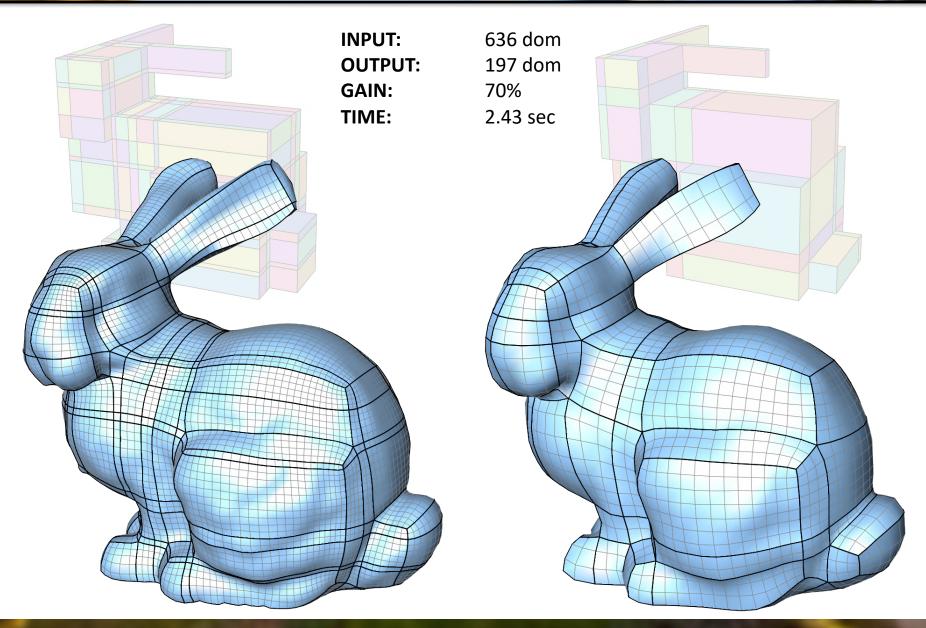
TIME: 14.7 sec

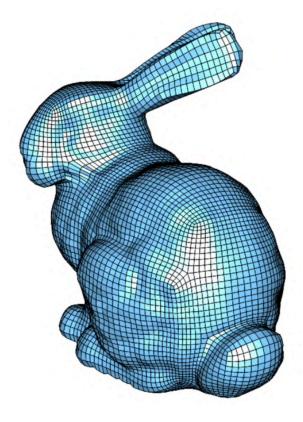


INPUT: 248 domOUTPUT: 192 domGAIN: 23%

TIME: 8.13 sec

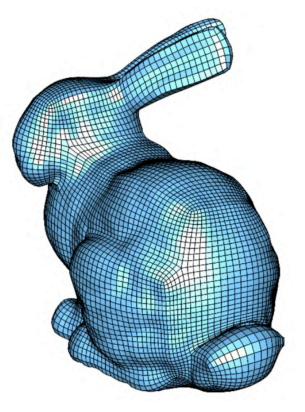






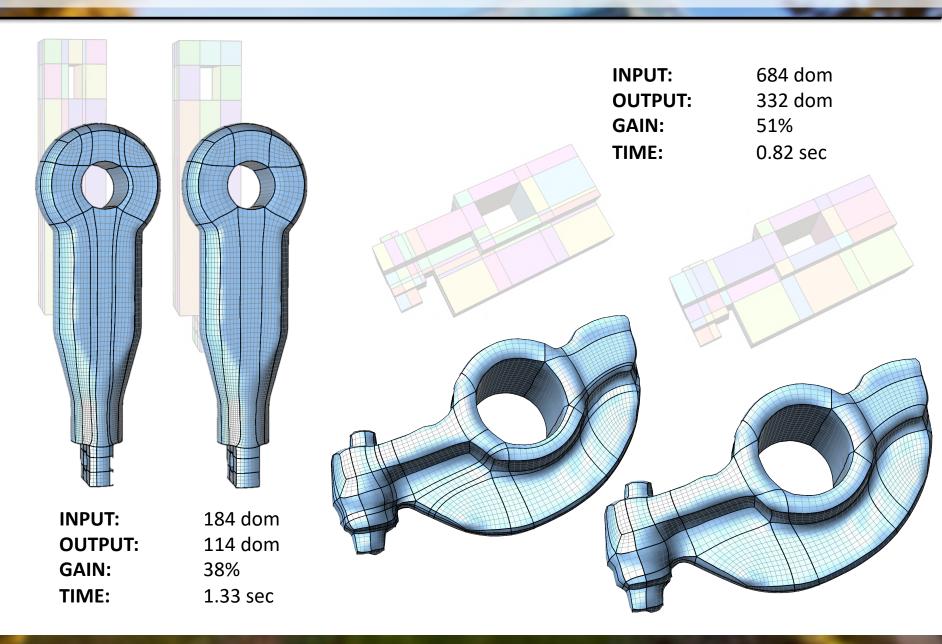
Without simplification

min / avg SJ .180 / .966

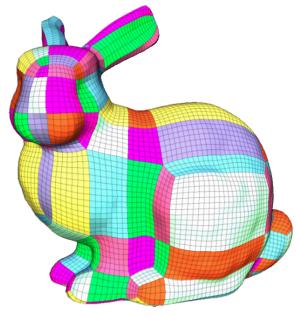


With simplification

min / avg SJ .205 / .935



Comparison



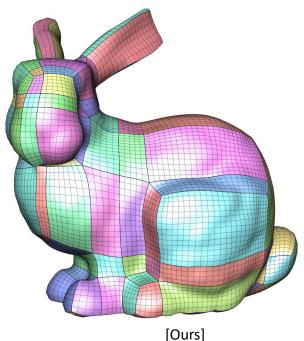
[Gao et al. 2015]

INPUT: 580 dom **OUTPUT:** 194 dom

GAIN: 67%

TIME: from 1 m to $\frac{1}{2}$ h

- Comparable results
- Time → two orders of magnitude lower



[Ours]

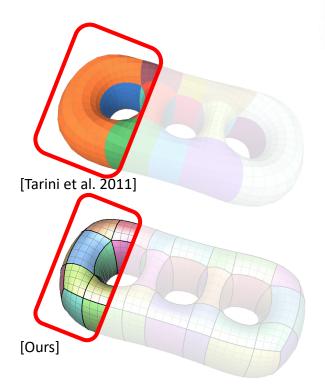
INPUT: 636 dom **OUTPUT:** 197 dom

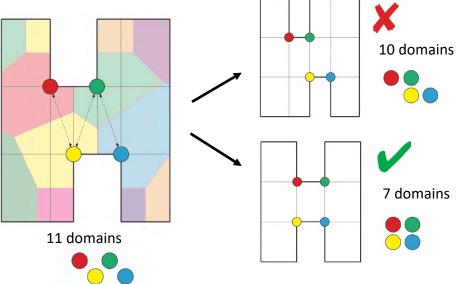
GAIN: 70%

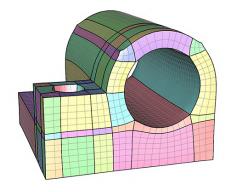
TIME: 2.43 sec

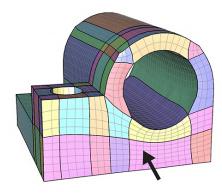
Limitations

- Corner pairing
- Map distortion
- ▶ Domains



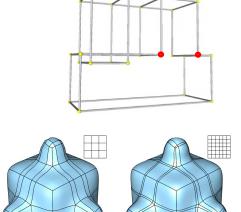


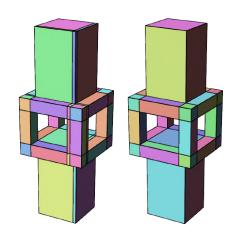




Conclusions

- We have proposed a novel method for the polycube simplification that:
 - Avoids topological inconsistencies
 - Is independent from the sampling resolution
 - Reduces the number of domains
 - Is simple to insert in the meshing pipeline
 - Is general (surface and volumetric meshes)
 - ▶ Is very fast





Thanks!

