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Figure 1: State-of-the-art methods for polycube-based meshing do not consider the corner alignment problem, thus producing both surface
and volumetric meshes with a poor structure (left). We propose an additional step in the pipeline: given a polycube we optimize for the position
of its corners, maximizing the singularity alignment and producing well structured meshes with remarkably less domains (right). In this
example we show how, with a few tiny adjustments on the position of the polycube corners, our method has been able to reduce the number of
volumetric domains from 276 to 111 and the number of surface domains from 111 to 78.

Abstract
Representing digital objects with structured meshes that embed a coarse block decomposition is a relevant problem in applications
like computer animation, physically-based simulation and Computer Aided Design (CAD). One of the key ingredients to produce
coarse block structures is to achieve a good alignment between the mesh singularities (i.e., the corners of each block). In this
paper we improve on the polycube-based meshing pipeline to produce both surface and volumetric coarse block-structured
meshes of general shapes. To this aim we add a new step in the pipeline. Our goal is to optimize the positions of the polycube
corners to produce as coarse as possible base complexes. We rely on re-mapping the positions of the corners on an integer grid
and then using integer numerical programming to reach the optimal. To the best of our knowledge this is the first attempt to solve
the singularity misalignment problem directly in polycube space. Previous methods for polycube generation did not specifically
address this issue. Our corner optimization strategy is efficient and requires a negligible extra running time for the meshing
pipeline. In the paper we show that our optimized polycubes produce coarser block structured surface and volumetric meshes if
compared with previous approaches. They also induce higher quality hexahedral meshes and are better suited for spline fitting
because they reduce the number of splines necessary to cover the domain, thus improving both the efficiency and the overall level
of smoothness throughout the volume.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1. Introduction

A cuboid can be trivially turned into a structured mesh by gridding
it. This simple statement has triggered the development of tech-
niques that aim to transform a shape into a conformal collection of
connected cuboids, also known as polycubes [THCM04].

The complex problem of generating a structured mesh out of
a general shape becomes straighforward with a polycube at hand.
The common pipeline starts with a morph that transforms the input
shape into a polycube, generating a volumetric map; the cuboids
of the polycube are then subdivided so as to achieve the desired
scale and, as a last step, the inverse map is used to transfer the
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Figure 2: Trivially snapping polycube corners to integer locations
can generate a number of topological inconsistencies. Left: two
corners (red and green) map to the same integer location, generating
a non-manifold vertex (red/green). Right: two vertices snap to the
closest iso-line, generating an overlap with another portion of the
polycube. In our algorithm we use explicit constraints to avoid such
cases.

connectivity of the resulting mesh from the polycube to the input
shape [GSZ11, LVS∗13].

The shape of the polycube defines the structure of the resulting
mesh, in the sense that polycube corners are singularities in the mesh
and chains of edges connecting pairs of corners induce a coarse
block-decomposition of the domain, also known as base-complex
among practitioners [GDC15]. In a sense, the base-complex of a
meshM can be thought of as the coarsest meshM′ having exactly
the same structure ofM. In the polycube case, the base-complex
is the coarsest mesh that can be generated from a given polycube.
Notice that the number of elements in the base-complex does not
depend on the number of polycube corners. Depending on how well
corners align (or misalign) to each other different base-complexes
can be produced (Figure 1).

Having a good alignment between the singular elements of a
mesh is a key ingredient in a number of applications. The sin-
gularity misalignment problem has been subject of extensive re-
search in recent years both for surfaces and volumes [AFTR15,
GDC15, VS15, BLP∗13, MPKZ10]. In hexahedral meshing overly
dense base-complexes tend to contain badly shaped cuboids that,
when subdivided for the generation of the final hex-mesh, pro-
duce poor quality meshes with tiny chances of further optimization.
Coarse base-complexes with well aligned singularities contain better
shaped cuboids, therefore tend to produce higher quality hexahe-
dral meshes [GDC15]. Furthermore, coarse base-complexes enable
lower resolution meshing, with consequent benefits for applications
both in terms of memory requirements and performance speedup.
In higher order-meshing [LZLW15, WZLH13, LLWQ13, WHL∗08]
a spline basis is fit into each cuboid of the base-complex, with the
resulting representation being C2 continuous within each cuboid
and only C0 at the boundaries between adjacent cuboids. Coarse
base-complexes minimize the extent of the C0 region, thus providing
a higher smoothness throughout the whole domain, enabling both
more accurate and more efficient simulations for applications like
Isogeometric Analysis (IGA) [HCB05].

Despite the importance that singularity alignment covers for the
aforementioned applications, previous methods for polycube com-
putation do not consider this aspect, thus generating sub-optimal
base-complexes with far too many cuboids.

Given a polycube map, previous methods generate the connectiv-
ity of the desired structured mesh by gridding the polycube with an

Figure 3: State-of-the-art methods may generate structurally differ-
ent meshes dependent from the density of the lattice used to sample
the polycube. Our method consistently produces meshes with equiv-
alent structure, regardless the density of the sampling.

integer lattice. To keep the map bijective, the corners of the poly-
cube must be at integer locations. To ensure this property a naive
snapping is usually performed, rounding each corner to its closest
integer location [GSZ11]. Prior to gridding, the polycube is scaled
by a factor s in order to control the mesh resolution.

Firstly, we observe that the naive snapping currently used in state-
of-the-art approaches can introduce topological inconsistencies in
the polycube structure. There are many pathological configurations
possible. For example two disjoint corners c and c′ may round to the
same integer location (Figure 2, left); or a corner c may be projected
on a polycube facet f if the distance d(c, f )≤ 0.5 (Figure 2, right).
Secondly, we notice that the scaling factor s not only controls the
mesh resolution but also has a non-intuitive, hard to control, effect on
the mesh structure. In fact, small scaling factors will produce a better
singularity alignment because polycube corners will be more likely
to round to the same integer iso-lines. Conversely, big scaling factors
will produce worse singularity alignments (and worse coarse layouts)
because corners will be more likely to round to different integer
iso-lines. In other words, the very same polycube may produce
structurally different meshes depending on the sampling density
(Figure 3).

In this paper we introduce, to date, the first method to optimize
the structure of a polycube base-complex. Our method works on
the topology of the polycube and, by carefully snapping corners
to integer locations, minimizes the overall number of cuboids. We
observe that the complexity of the problem we tackle is exponen-
tial in the number of corners. To render this problem tractable we
therefore propose a greedy simplification strategy. We demonstrate
our results on several polycubes produced with the most recent
algorithms available in literature. The base-complexes produced
by our method can be used both for spline fitting and hexahedral
meshing. We also show that the boundary of our base-complexes
can be used to generate well structured quad meshes that embed a
coarse quad-layout [ULP∗15].

Our main contribution to the meshing pipeline is an effective
and robust numerical method to optimize the position of the poly-
cube corners in the integer lattice. Specifically:

• we optimize the corner position in order to provide the best singu-
larity alignment possible. For a given polycube, we consistently
produce meshes with equivalent structure, regardless the scaling
factor applied to the integer lattice to control the resolution. Our
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Figure 4: A brief recap of the various stages of the remeshing
pipeline: we start from a triangle or tetrahedral mesh (top left),
we generate the polycube layout (top right), we simplify the base
complex structure with our novel method (bottom right), and, finally,
we generate a quad or an hexahedral mesh (bottom left).

polycubes are on average 46% coarser than previous polycube
based methods; they produce higher quality hexahedral meshes
and are better suited for spline fitting.
• we propose a set of constraints to consistently generate struc-

turally sound polycubes, avoiding the generation of collapsed
edges, non-manifold corners and self-intersections. Our con-
straints are defined on the polycube corners and are easy to plug
into existing solvers as they consist in linear equations and in-
equalities.

2. Related Work

Our work is related to research in several areas reviewed below.

Polycube maps. Bijections between a general shape and orthogo-
nal polyhedra (or polycubes) were introduced in computer graph-
ics as a mean to generate seamless texture maps [THCM04] and
have received growing attention from the scientific community ever
since, especially for volumetric applications like solid modeling
[WHL∗08] and hexahedral remeshing [LVS∗13, HJS∗14, YZWL14,
GSZ11]. To asses the quality of a polycube the most important
factors are the distortion induced by the map, and the number of cor-
ners, which will be singularities in the resulting splines/hehahedral

meshes. The first attempts to automatically generate polycube
maps were not sufficiently robust to process complex shapes and
tended to produce either overly coarse [LJFW08] or overly com-
plex [HWFQ09, GSZ11] polycubes, with the former suffering from
high distortion and the latter producing unnecessary corners. This
technology is now rather mature; the most recent algorithms are able
to process complex shapes and consistently provide polycube maps
with both low distortion and low corners count [LVS∗13, HJS∗14].
None of these methods takes into consideration how well corners
align to each other, which is one of the key ingredients to derive
a coarse block-decomposition of a shape. As a result, they are not
suitable for the generation of coarse layouts. Our method tackles
this very specific problem and is capable of working on top of any
given polycube map, whether it is generated with one of the methods
above or manually crafted, as in [WHL∗08, THCM04].

Block-structured meshing. The generation of meshes that admit a
coarse block decomposition is a problem with relevant applications
in animation, FEM analysis and Computer Aided Design (CAD).
For the surface case a block-structured mesh often comes in the
form of a quadrilateral mesh obtained by gluing side to side a set
of quadrilateral patches (or blocks) in a conforming way [BLP∗13].
Each patch is a 2D array of quads. Depending on the applicative field
these meshes are called semi-regular or multi-block grids, whereas
the graph having as nodes the patches’ corners and as arcs their
edges is usually referred to as coarse quad-layout.

A variety of methods for the automatic computation of coarse
block-structured meshes have been proposed in literature [BLK11,
TPP∗11]. However, most of these methods are either too demanding
from a computational point of view [BCE∗13, CBK12] or focus on
a specific class of shapes and do not scale well on general models
[ULP∗15]. Our method builds upon a given polycube map and
is therefore general enough to be applied to any class of shapes.
Another body of research deals with the generation of user interfaces
for the manual generation of quad-meshes and quad-layouts. These
methods can produce extremely high quality layouts [MTP∗15,
CK14, TPSHSH13], but, in order to achieve the maximum result,
they need to be controlled by an experienced user.

For the volumetric case, in [GMD∗15] a sweeping method that
subdivides the volume enclosed by a triangular mesh into a set of
cuboids is proposed. This method can produce extremely coarse
layouts, though at the expense of a major deviation from the tar-
get shape. It also requires some manual intervention to set up the
harmonic field that guides the meshing process. Notice that this
manual step may have a dramatic impact on the final result and
needs experienced users. In [GDC15] Gao and colleagues showed
that by coarsening the singularity structure of a given hexahedral
mesh the per-element quality of the mesh can be improved with-
out affecting the deviation from the target shape. This method is
quite general as it works with any hexahedral mesh, regardless the
meshing technology used to generate it. It is, however, very demand-
ing from the computational point of view (it may require up to 30
minutes of computation). Our method amounts to just an additional,
lightweight, step in the polycube meshing pipeline, and is capable
of producing comparable results (Section 7).
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3. Overview

We present here our polycube simplification strategy. This is the
optimization step of the pipeline as described in Figure 4.

We observe that the blocks of a base-complex are glued
face-by-face. Each block separation (i.e., a face shared between
two adjacent blocks) defines a separation plane that propagates
throughout the whole complex. Therefore, keeping the faces on
a limited set of planes reduces the overall number of blocks.

We align the block faces on the smallest
possible set of planes in each direction
to produce a base-complex with the low-
est possible number of blocks. In the
example aside the initial base complex
has 26 surface patches and 33 volumet-

ric domains (included the inner padding). Simply by aligning two
faces we reduce to 18 surface patches and 22 volumetric domains.

For ease of formulation and implementation we reduce the prob-
lem of aligning faces to the problem of aligning corners. Whenever
the position of a corner changes, we ensure that the position of all
the incident edges and faces is coherently updated so as to preserve
the axis aligned structure of the polycube. We achieve this with a
set of explicit constraints, detailed in Section 5.1. During the sim-
plification we can, therefore, focus only on the relations between
polycube corners.

The core of our simplification strategy is a concise iterative
method: at each iteration we first identify a set of pairs of corners
to be aligned (Section 4) and then solve an integer numerical pro-
gram to align them in the integer lattice (Section 5). The alignment
process is cumulative, meaning that at each iteration we preserve
all the corner alignments produced at the previous iterations. This
ensures that the number of aligned pairs grows monotonically. The
algorithm converges when no further alignments are possible. Since
the set of possible corner pairs is finite, convergence is guaranteed.

We motivate the use of an iterative method by observing two
things: (i) a corner may want to align with many other corners, so it
needs to be paired more than once; (ii) not all the alignments can
be discovered right away. We empirically observed that iteratively
aligning corners and looking for new pairs allows us to produce
coarser base-complexes than trying to align all the corner pairs in a
single global solve.

The few lines of pseudo-code in Algorithm 1 summarize the
main steps of our method. We start with an input polycube (either
computed with off-the-shelf algorithms or manually crafted). We
support both surface and volumetric polycubes that may come in the
form of either a triangular mesh or a tetrahedral mesh. In the first
step we extract the polycube structure (i.e., the set of corners and
their connectivity). We then move to the iterative alignment, which
is the core of the method. Details regarding this part are given in
Sections 4 and 5. At the end of the alignment, for each corner in the
polycube we have new (integer) coordinates. In the final step we
morph the input polycube into its new, optimized, structure. Details
about this part are given in Section 6. The result is a simplified
polycube embedding a coarse base-complex that can be used for
surface and volumetric meshing, or for spline fitting.

Procedure Polycube Simplification
input : a polycube P
output : a simplified polycube P ′

repeat
Compute corner pairs (Section 4)
Align corner pairs (Section 5)

until convergence;
Morph P onto the simplified polycube structure (Section 6)
return P

Algorithm 1: Our simplification algorithm in a nutshell. We itera-
tively interleave corner pairing and alignment until convergence
(i.e. until no further alignment can be performed). We eventually
morph the input polycube in its optimized integer structure.

4. Corner pairing

We detail here how to compute A = {Ax,Ay,Az}, the sets of corner
pairs we want to align along x,y and z respectively.

To find pairs of neighbour corners we employ a heuristic based
on the three-dimensional Voronoi dia-
gram of the polycbue corners. Specifi-
cally, we consider the dual graph of the
Voronoi partitioning as the adjacency
graph, labeling corners belonging to ad-
jacent cells as neighbours. In Figure 5
we show a simple 2D example of how we use the Voronoi diagram
to pair non-adjacent corners.

Once we have defined the complete list of neighbour pairs we
can select, among them, the candidates for alignment along each
coordinate. We, thus, prune the graph of adjacencies discarding the
arcs (pairs of vertices) according to the following rules:

• We remove from A the pairs which are end-points of the same
edge since they are already aligned along one coordinate and it is
not possible to align them along another one without changing
the edge orientation or without collapsing it.

• We remove from A the pairs of vertices which are end-points of
edges incident on the same vertex. In a polycube, if the corners
(c,c′) and the corners (c,c′′) are already aligned along one coor-
dinate, it is not possible to align the pair (c′,c′′) without losing
the axis-align property or collapsing an edge.

Figure 5: A 2D example that explain how we need to use the Voronoi
diagram to find the candidate pairs of corners to align; the Voronoi
diagram in background is computed with the original positions of
the vertices (left side); after the alignment we reduce the number of
domains from 17 to 12 (right side).
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• We finally remove from A external adjacent corners since it is
useless to try to align them since their alignment does not produce
any reduction in the number of domain of the base complex.

After the pruning, we have in A only the candidates for alignment.
To obtain the sub-sets Ax, Ay and Az we now just need to determine,
for each pair in (c,c′)∈ A ,the coordinate along which the alignment
is possible. If we found more than one possible alignment for a
corner c along the same coordinate, we select as candidate for the
alignment the corner c′ closest along the considered coordinate.

5. Corner alignment

We pose the corner alignment problem as an integer optimization
problem enriched with a set of linear constraints aimed to preserve
both the corner alignments achieved at the previous iterations and
the topological structure of the polycube.

Let A be the set of corner pairs we want to align at the current
iteration, and let A∗x ,A

∗
y and A∗z the sets of corner pairs for which

an alignment has already been achieved at previous steps (along the
x,y and z coordinates, respectively). We formulate our optimization
problem as follows

min E = Ealign(A)+λ ·Eshape
s.t.

cy = c′y cz = c′z ∀(c,c′) ∈ A∗x
cx = c′x cz = c′z ∀(c,c′) ∈ A∗y
cx = c′x cy = c′y ∀(c,c′) ∈ A∗z
polycube structural constraints.

(1)

The first term of our energy (Ealign) aims to snap each corner pair
(c,c′) ∈ A on the same iso-line of the integer lattice. We perform
this operation independently on each dimension. Let us imagine to
split A into three sub-sets, Ax, Ay and Az, representing the sets of
corner pairs to be aligned along the x, y and z coordinate respectively.
We can express Ealign as follows

Ealign(A) = ∑
(c,c′)∈Ax

(cx− c′x)
2 + ∑

(c,c′)∈Ay

(cy− c′y)
2 + ∑

(c,c′)∈Az

(cz− c′z)
2

In our experiments we noticed that the alignment term alone is not
capable of producing extremely coarse base-complexes. We learned
that the algorithm tended to align the furthest pairs (c,c′) ∈ A first,
leaving all the “easy” alignments for the subsequent iterations. This

“complex first, easy after” behaviour is well explained by the fact
that Ealign is quadratic, and thus aligning the furthest pairs first is
the best way to rapidly minimize the energy. The problem with
this behavior is that performing the most difficult alignments first
may heavily change the shape of the polycube, generating deadlock
configurations in which the (in the beginning) closest corner pairs are
no longer possible to align because of the constraints the numerical
program is subject to.

We compensate this behaviour by adding an additional regulariza-
tion term to the energy: Eshape. This energy is a simple corner-wise
attraction to the input polycube, that is

Eshape = ∑
c
‖c− c̃‖2

with c being the current corner position and c̃ the original corner
position. The regularization term is particularly useful in the first
iterations because prevents dramatic changes in the polycube shape,
thus favoring the alignment between the closest corner pairs first.
It is however limiting towards the end of the optimization, when
these easy alignments are no longer available, and to align the
furthest corner pairs would be necessary. In Equation 1 we therefore
multiply Eshape by a scaling factor λ. We experimentally found that
starting with λ = 1 at the first iteration and halving it after each
iteration provides the wanted behavior; all the results produced in
this paper have been produced using this scaling strategy. Notice that
different weighting schemes may accommodate better results for
certain shapes. In Section 7 we discuss how to use λ to control the
trade-off between polycube simplification and mapping distortion.

5.1. Structural constraints

We impose a series of constraints to preserve the axis aligned struc-
ture of the input polycube, also avoiding edge collapses and self-
intersections. This reduces to a set of linear constraints, as detailed
below.

Collinearity of the end-points. We constraint polycube edges in
order to keep them axis-aligned. We have seen before that in the
Ealign portion of the energy function we try to align corner pairs
along one coordinate. We want to avoid that this attempt will move
the edge off the integer lattice. Let e(c,c′) be a polycube edge
connecting the corners c and c′, and let us suppose that e is aligned
with the x axis. In order to keep its original orientation when we
solve for the c and c′ coordinates we impose the following two
linear constraints {

cy = c′y
cz = c′z

(2)

These linear constraints prevent e to move off the x axis. In a similar
fashion edges aligned with the y and z axis can be forced to maintain
their original alignment.

Minimum length of edges. In our formulation the smallest edge
length is fixed to 1 to avoid edge collapses. We ensure this by
combining (2) with one more linear constraint per edge e(c,c′)

(c− c′) ·u≥ 1 (3)

Here u = c−c′
‖c−c′‖ is a pre-computed unit length vector aligned

with e. We remind the reader that the polycube edges cannot change
orientation during the optimization, therefore we can compute the
vectors u once using the original corner coordinates and use them
throughout the whole iterative simplification. Given the axis aligned
structure of a polycube u can be either (±1,0,0) or (0,±1,0) or
(0,0,±1). Furthermore, notice that this constraint not only prevents
the edge to be shorter than 1, but also preserves its original orienta-
tion, avoiding an edge flip.

Corners collapse. All the constraints described before are quite
natural to impose. One condition more subtle to check is the avoid-
ance of the collapse of corners that are not end-points of the same
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edge. In particular we want to avoid that corners pairs (c,c′) ∈ A
reach the alignment by occupying the same position in the integer
lattice. In this case we do not have a simple criterion like the edge
collapse to avoid the move. Recall that, in such a case, the resultant
polycube would be not manifold and would lose its original topology
(Figure 2, left).

To tackle this problem we add to our model a particular constraint
that creates a separation plane between the two corners that are
attracting each other. Let e(c,c′) be an invisible edge connecting the

non adjacent corners c and c′. We define
Πe as the plane passing through the middle
point of e and having c−c′

‖c−c′‖ as normal
orientation. This defines a partition of the
space, with c belonging to the positive half-
space and c′ belonging to the negative half-
space of Πe. The planes Πe are computed
at each iteration according to the current

coordinates of the polycube. When we solve for the new polycube
coordinates we then add two constraints to keep c and c′ in the
half-space they belong to, specifically:

{
Πe(c) > 0
Πe(c′)< 0

(4)

We do this for each corner pair (c,c′) ∈ A.

Dummy vertices and edges. The last condition to control is even
more subtle than the previous. We want to avoid that: (i) parts of
the polycube which are not adjacent compenetrate; (ii) the outside
boundary and any of the holes of a non-simple face touch, thus
changing the face topology. To this extent we use dummy vertices
and dummy edges. A dummy vertex is defined as the intersection
between the supporting line of a polycube edge and the polycube
faces closest to it on each side (if any). A dummy edge, on the other
hand, connects an end-point of a polycube edge to its corresponding
dummy vertex. We compute all the dummy vertices and edges in
our polycube and treat them as if they were real polycube edges,
imposing that their length must be equal or bigger than 1 (as in 3).
With this simple new set of constraints we avoid collapses between
vertices and edge, vertices and faces, edges and edges or inner
and outer boundaries of the same face. For consistency, we also
impose special constraints to ensure that dummy vertices will stay
within the edge or face they belong to. In Figure 6 we emphasize
the importance of our consistency constraints, showing an example
of polycube optimization with and without dummy edges. As can
be noticed, dummy edges ensure topological consistency, without
penalizing the quality of the alignment.

Dummy edges computation. For the computation of dummy
edges we work on each dimension separately. We explain our proce-
dure for the x axis; everything applies also to the y and z axis. Let
f 0
x ≤ f 1

x ≤ ...≤ f n
x be the list of polycube facets having the x axis

as normal orientation, ordered according to their x coordinate. Let
e(c,c′) be a polycube edge aligned with the x axis, such that cx < c′x.
We first extend e from the c side, finding the first non-empty inter-
section with the closest facet fx having x coordinate lower than cx.

Figure 6: A simple example of a pair of corners that we want to
align (a). In (b) we can see the resultant alignment without using
dummy constraints. In (c) the black edges represent the dummy
edges and in (d) the final polycube after the optimization with the
dummy constraints.

If such facet exists, we consider the intersection point as a dummy
vertex and we add a dummy edge connecting such point with c.
We, than, repeat it for c′. We do this for any edge in the polycube,
using similar lists for the y and z axis as well. Notice that given the
coarseness of polcyubes this procedure is very fast (i.e., a fraction
of a second).

6. Finalization

At the end of the corner optimization we have a new polycube
structure, optimized in the sense that it has the least number of
blocks. This polycube may be dramatically different from the input
one because the alignment process produces a lot of compression
and stretching of the block volumes, with bad consequences for
the distortion of the associated polycube map. In order to preserve
the quality of the original polycube map as much as possible, we
solve the problem formulated in Equation 1 once more, without the
Ealign part of the energy and with λ = 1. In this final optimization
we constrain all the corner pairs alignments found at the previous
stage of the algorithm. This generates a polycube structure that is
as close as possible to the input polycube but at the same time has
integer coordinates and optimal structure. The resulting polycube
is so similar to the input one that the distortion induced by our
optimization in the polycube map is often negligible (Figure 7,
right).

We then finalize our output by fitting the input polycube (which is
either a triangle or a tetrahedral mesh) into this structure. Let P be
the input polycube: to fit the polycube in the optimized structure we
solve a simple laplacian problem∇P = 0. We constrain, for each
vertex p ∈ P: (i) all its three coordinates if it is a polycube corner;
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INPUT Iter #1 Iter #2 Iter #3 Iter #4 Iter #5 OUTPUT

Figure 7: From left to right: the input polycube, the five iterations necessary to complete the simplification process, and the output polycube. As
can be noticed the iterative corner alignment dramatically changes the polycube appearance, introducing a lot of compression and stretching
of the domains. In the last step of our algorithm we solve a constrained problem to restore the original aspect of the polycube while preserving
its optimal structure. The result (rightmost bunny) is so similar to the input that the distortion induced by our simplification is often negligible.
Should this not be the case, the user can control the simplification process by setting a lower bound for λ , making the algorithm quit before its
natural convergence and thus producing a less simplified polycube that better preserves the quality of the input polycube map.

(ii) two, if p lies on a polycube edge; (iii) one if p is onto a polycube
facet; (iv) no coordinates at all if p is inside the polycube. The last
condition applies only if P is a tetrahedral mesh. For surface meshes
we implement the∇ operator using the cotangent weights whereas
for volumetric meshes we use the 3D mean value coordinates in-
troduced by Floater and colleagues in [FKR05]. The result of this
process is a polycube with the same connectivity of the input but
optimized structure. This polycube may contain flipped or inverted
elements and also has overlaps at concave features. Depending on
the applications, an optimization strategy may be used to improve
the mesh quality (e.g., [AL13]).

7. Results

We implemented our algorithm on a MacBook Pro equipped with
an Intel Core i5 2,6 GHz processor and 8 GB of RAM. We used
Voro++ [Ryc09] for the computation of the Voronoi partitioning and
Gurobi [Gur] as numerical solver. For the generation of the meshes
we implemented the standard polycube-based meshing pipeline as
described in [GSZ11]. We then relied on the Edge-Cone Rectifica-
tion method [LSVT15] to optimize the resulting hexahedral meshes
and remove all the inverted elements possibly present. A gallery
of results achieved with our method is depicted in Figures 8 (only
base-complexes) and 9 (base-complexes and meshes).

We compare the standard polycube meshing pipeline with a mod-
ified pipeline in which we added our simplification system prior to
the hexahedral mesh generation step. We relied on Polycut [LVS∗13]
to generate all the polycubes we used in our tests. In Table 1 we
compare our numerical results with the standard meshing pipeline.
For each model we show: elements count, per-element quality (min-
imum and average Scaled Jacobian), and number of domains in the
base-complex. For the sake of a fair comparison we always tried
to generate hexahedral meshes with similar elements count and we
always run the hexmesh optimizer with standard parameters. In all
cases our optimized polycubes produced higher quality hexahedral
meshes compared to the meshes produced from the non-optimized
counterparts. This confirms what Gao and collegaues had already
shown in their recent work [GDC15]. Overall, we have been able to
reduce the complexity of the initial polycube with factors ranging
from 25% to 70%. In the last column of the table we report the
time necessary to perform our polycube simplification. Even in the

most complex cases a few seconds are enough for our algorithm to
converge.

Unfortunately, we could not perform precise and extensive com-

Figure 8: A gallery of optimized polycubes, shown with the color
coded quad layout. For every polycube we report the number of
surface blocks in the input, in the output and the gain ratio.
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Model
Without simplification With simplification

Gain Time
# Hexa min / avg SJ Domains # Hexa min / avg SJ Domains

RockerArm 22K .224 / .943 648 22K .266 / .944 332 49% 0.82s
Bunny 48K .180 / .966 636 8K .205 / .935 197 70% 2.43s
ASM 30K .224 / .970 184 30K .286 / .971 114 38% 1.33s
CubeSpikes 32K .658 / .974 276 23K .690 / .978 111 60% 1.36s
Block 18K .178 / .954 158 18K .179 / .955 100 37% 1.96s
Femur 15K .503 / .957 145 15K .544 / .959 110 24% 0.43s
Hand 32K .462 / .967 172 5K .486 / .935 107 38% 1.33s
Table 8K .304 / .938 195 10K .592 / .940 149 24% 1.20s
Teapot 35K .450 / .978 323 34K .570 / .979 193 40% 4.28s

Table 1: We show here the improvements in terms of number of domains obtained with our simplification. The decreased number of domains
has a positive impact on hexahedral remeshing. In all our experiments the hexahedral meshes computed on top of optimized polycubes had
both higher minimum and average Scaled Jacobian.

parisons against our closest competitor [GDC15] since we did not
have the polycubes they used to generate the hexahedral meshes
shown in their paper. However, to give the reader an idea of the
performances of the two algorithms we report here two comparisons.
For the RockerArm model they started with a polycube-generated
hexahedral mesh having 664 domains, and they simplified its struc-
ture reducing it to 335 domains (50% gain). We passed from 648 to
335 domains (49% gain). For the Bunny model they passed from 580
to 194 domains (67% gain). We passed from 636 to 197 domains
(gain 67%). These numbers suggest that our algorithm produces
comparable results both in terms of reduction factor and minimum
number of domains in the complex. Our algorithm converges in
a few seconds while the method presented in [GDC15] requires a
much heavier computational effort, up to 30 minutes.

Polycut L1 Ours

Model
[LVS∗13] [HJS∗14] Ours

#sv #dom #sv #dom #sv #dom

Cube Spikes 56 168 – – 56 78
Bunny 64 352 76 176 64 136
Block 48 112 – – 48 76
Rocker Arm 62 352 64 426 62 208

Table 2: We report here both visual and numerical results for the
generation of coarse quad-layouts. We compare with the two most
recent polycube-based methods. For each algorithm we report both
the number of singular vertices (#sv) in the layout and the number
of surface domains (#dom). As can be noticed our smart simplifica-
tion strategy allows us to consistently outperform the quad layouts
produced from other polycubes.

Coarse Quad-Layouts. Our method can also be used to generate
quadrilateral meshes embedding a coarse quad-layout. To do so, at
the meshing stage we sample only the surface of the base-complex,
ignoring the vertices of the integer lattice located in the interior
of the polycube. In Table 2 we compare our quad layouts with
the ones produced by [HJS∗14, LVS∗13]. We consistently outper-
form previous methods generating coarser layouts. For some of the
shapes we tested, we have been able to match the performances
of some of the best algorithms specifically designed to generate
coarse quad-layouts. In particular, our layout for the block model
has 48 singular vertices and 76 blocks and is equivalent to the ones
generated from [BCE∗13, CBK12]; our layout for the Cube Spikes
model has 56 singularities and 78 domains and is equivalent to the
one generated from [TPP∗11]. However, since our optimization
works in the polycube space, it may not be flexible enough to match
the performances of these algorithms for shapes whose features
fail to align to the XY Z frame. For example, the method proposed
in [ULP∗15] is capable of producing a layout with 24 singularities
and 28 domains for the RockerArm, whereas our best result on that
model contains 62 singularities and 208 domains.

Simplicity vs distortion. Optimizing the structure of the a poly-
cube base-complex is always a matter of finding the right balance
between simplification and mapping distortion. Too aggressive sim-
plifications may result in distorted polycubes that degrade the quality
of the associated map. In Figure 7 we show all the iterations (and
associated λ values) for the simplification of the Bunny’s polycube.
We observe that by properly setting a lower bound for the λ pa-
rameter the user can control the simplification process, making the
iterative simplification quit before the natural convergence, thus
obtaining a partially simplified polycube with lower distortion map.
We believe this is an easy and intuitive way, for the user, to control
the tradeoff between simplicity and distortion.

8. Limitations

The method proposed in this paper is a heuristic and, as such, is
subject to some limitations. Here we recap the major shortcomings
of our approach.
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Figure 9: A gallery of results obtained with our method. For every model: the original polycube, computed with [LVS∗13] and the block
layout derived from it (left); our optimized polycube and the block layout derived from it (right).

Corner pairing. The Voronoi-based corner pairing strategy de-
scribed in Section 4 is not guaranteed to generate all possible corner
couples. Furthermore, when there are multiple possible pairings
for a given corner, we arbitrarily select the closest one along the
considered coordinate, which may not be the optimal choice in some
cases, as depicted in Figure 10.

Map distortion. In the finalization step (Section 6) we maximize
the similarity between the input and output
polycubes, assuming that this is a good proxy
to bound the distortion of the polycube map.
Although this heuristic produces good results
for most of the models we tested, there might
be pathological cases in which this assump-
tion is not true. An example of this is given in
the inset aside, where some of the domains un-
derwent severe stretching after simplification,
thus producing a low quality coarse layout. In

this case the user can trade simplicity for a lower map distortion
with the mechanism described in Section 7.

Domain. We optimize the mesh structure in the polycube space,
therefore we inherit the limitations of the do-
main we live in. In the image aside we show
two different structures for the triple torus.
The one above was obtained with [TPP∗11]
and the one below is our result. The curved
domains at the extremities of the shape cannot
be represented in the polycube space, there-
fore we split them into three sub-domains

each, thus generating a higher number of cuboids.

9. Concluding remarks

We have presented here a novel method for polycube simplifica-
tion. Our method is very fast, simple to be inserted in a re-meshing
pipeline and needs a single parameter to be set. It is thought to be
plugged into the overall pipeline able to re-mesh shapes described
by triangle meshes into quad meshes (in case of surfaces), or shapes
described by tetrahedral meshes into hexahedral meshes (in case of

7 domains

10 domains

11 domains

Figure 10: When a polycube corner can align to more, nearly
equidistant corners, our alignment scheme may take the wrong
decision, generating sub-optimal results. Here the yellow corner
can align with both the green and red corners (left). Chosing the
yellow/green pair we produce a layout with 10 domains (top right);
chosing the yellow/red pair we go down to 7 domains (bottom right),
thus achieving the optimum.
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volumes). The simplification is performed in the polycube space,
optimally aligning vertices in the integer lattice. Our approach over-
comes previous limitations in polycube-based meshing, making the
process independent from the sampling resolution and generating
structured meshes with lower number of domains.
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