
UNIVERSITÀ DEGLI STUDI DI CAGLIARI
FACOLTÀ DI SCIENZE

Corso di Laurea Magistrale in Informatica

PolyCubes Optimization
Generating Coarse Quad-Layouts via Smart Polycube

Quantization

Supervisor M.Sc. Candidate
Prof. Riccardo Scateni Gianmarco Cherchi

Matr. N. 49183

ACADEMIC YEAR 2014/2015

“We all change, when you think about it. We are all di�erent people,

all through our lives. And that’s okay, that’s good, you gotta keep

moving so long as you remember all the people that you used to be. I

will not forget one line of this, not one day, I swear . . . ”

The eleventh Doctor.

Quad-LAYOUTS are useful in a large number of applications in Computer Graph-
ics. In particular we use them in Animation and in Game Development to

describe, through the quads, the semantic parts of the characters to animate. In
this thesis we propose a novel algorithm for the generation of pure quad-layouts
by using optimized polycubes as an intermediate step. We have developed an al-
gorithm that solves, in an iterative way, a mathematical model we have defined to
optimize the polycube. This model is only composed of linear constraints. The
resultant polycube allows us to extract a coarse quad-layout with a low number
of quads. We have obtained a significant percentage of reduction of the quads’
number in the quad-layout and good performances.

IQuad-LAYOUT sono impiegati in molte applicazioni nel campo della Computer
Graphics. In particolare possono essere utilizzati nell’Animazione e nello Svilup-

po di Videogiochi per descrivere, mediante i domini, le diverse parti di un per-
sonaggio da un punto di vista semantico. In questa tesi viene proposto un al-
goritmo innovativo per la generazione di quad-layout utilizzando come step in-
termedio dei policubi ottimizzati. È stato sviluppato un algoritmo che si occupa
dell’ottimizzazione dei policubi mediante la risoluzione, in maniera iterativa, di
un modello matematico da noi definito. Tale modello è composto esclusivamente
da vincoli lineari. Il policubo ottenuto come risultato consente l’estrazione di un
quad-layout “coarse” che presenta un basso numero di domini. I risultati rag-
giunti mostrano una significativa percentuale di riduzione del numero di domini
nel quad-layout e delle buone performance.

Contents

1 Introduction 1

2 State of the art 5
2.1 Quad-Meshes and Quad-Layouts . 5
2.2 PolyCubes . 9

3 Motivation 13

4 The Mathematical Model 15
4.1 The Objective function . 15

4.1.1 Shape preservation . 15
4.1.2 Alignment . 16

4.2 Constraints . 21
4.2.1 Collinearity of the end-points 21
4.2.2 Minimum length of the edges 22
4.2.3 Vertices already aligned . 22
4.2.4 Avoiding the collapse of the vertices 23
4.2.5 Dummy vertices and edges 24
4.2.6 Integer coordinates . 26

4.3 The final model . 26

5 Algorithms and Implementation 29
5.1 The final algorithm . 29
5.2 The interactive tool . 35

6 Results 39

i

7 Conclusions 47

8 Future Works 49

A Gurobi Optimizer 51

References 56

List of Figures 59

List of Tables 61

List of Listings 63

ii

1
Introduction

Game DEVELOPMENT and ANIMATION are two of the key fields of Computer
Graphics and today they are topics of many research projects. Animat-

ing a 3D model is one of the main goals of these disciplines.

Figure 1.1: Examples of 3D models.

The surface of digital characters is often represented by means of hundreds
(if not thousands) of small quadrilaterals glued together along shared edges. In
quadrilateral-mesh (also called quad-mesh) the way this quadrilaterals are con-
nected together is quite important for the quality of the animation: the more their
edges are aligned to the features of the character the more realistic the animation
will be. Moreover, it is common practice to group together quadrilaterals into big-
ger quadrilateral domains, each one describing a semantic part of the character.
This decomposition of the surface of the character, often referred to as “quad-
layout” (see Section 2.1), is quite important to compactly store important informa-
tion describing the appearance of the shape, such as textures, material properties,
fur or other tiny scale features of the surface.

Today techniques like virtual sculpting or scanning systems produce irregu-
lar meshes (without a well-define structure) that are not very useful in Computer

1

Graphics. The definition of a structure for an unstructured mesh, through specific
operations called retopology or remeshing, is not simple (in Section 2.1 we cite some
techniques at the state of the art).

Figure 1.2: Examples of quad-layouts obtained with di�erent algorithms taken from [14],
[2] and [15].

The aim of this thesis is to obtain a coarse quad-layout to give a structure to an
unstructured mesh. To achieve this result we have defined a pipeline (see Section
3) that starts from a 3D model and, thanks to its polycube representation, arrives
to a final coarse quad-layout mapped to a structured quad-mesh. We propose an
automatic approach for the optimization of the polycube used as an intermediate
step in the pipeline. An optimized polycube makes the extraction of a coarse
quad-layout possible. The obtained quad-layout can be directly mapped to the
relative quad-mesh. The optimization is made possible by a mathematical model we
developed with a quadratic objective function and all linear constraints (explained
in detail in Chapter 4). Solving this model allows us to perform the alignment of
vertices, edges and faces of the polycube in an e�cient way. The model is built and
solved several times inside an algorithm in an iterative way (as explained in Chapter
5). For each model we extract its polycube (with the PolyCut algorithm [10]), we
perform the optimization and we extract the final optimized quad-layout. We have
obtained satisfying results, illustrated in the Chapter 6, with significant percentage
of reduction of the quads’ number in the quad-layout and good performances.

Figure 1.3: Example of the polycube optimization: the Dragon’s face in the original model
(left), in the initial polycube (center) and in the optimized polycube (right).

2

The rest of the thesis is organised as follows: in Chapter 2 we will give a brief
summary of the background and the state of the art useful to understand this work
and the problem we want to solve, in particular we talk about quad-meshes, quad-
layouts and polycubes; in Chapter 3 we will discuss in detail the problem we want
to solve and why it is important; in Chapter 4 we will show the development of the
mathematical model used in our algorithm, explaining its objective function and
its constraints; in Chapter 5 we will present the entire algorithm and the developed
interactive tool to run it (with an example); in Chapter 6 we will illustrate the
obtained results with an analysis of memory and time performances; in Chapter
7 we will draw our conclusions and in Chapter 8 we will analyse the limitation of
the algorithm and we will explain what can be done in the future to improve and
continue the work. Finally, in Appendix A, we will show in detail some example
about the code used for the creation and the optimization of the mathematical
model.

3

4

2
State of the art

In Animation and in Game Development the use of Quad-Meshes and Quad-
Layouts is very important. Quad-meshes are much more useful than Triangle-

meshes in several fields of Computer Graphics. Di�erent types of quad-meshes
can be obtained from an initial 3D model. PolyCubes can be an innovative way to
obtain optimized quad-meshes and optimized quad-layouts for di�erent reasons. In
this chapter we describe the most important features and qualities of quad-meshes,
quad-layouts and polycubes.

2.1 Quad-Meshes and Quad-Layouts

In 3D Computer Graphics a Polygon-Mesh is a collection of vertices, edges and faces
of a polyhedral object. Quad-meshes are a type of polygonal meshes in which faces
are quadrilateral.

Figure 2.1: An example of quad-mesh that represents the 3D model of the Stanford Bunny.

In addition to the classical terminology like vertices, edges and faces, to talk
about quad-meshes we must introduce some definitions like singularity, chart bound-

5

ary and chart. A “singularity” is a particular vertex of a quad-mesh that has valence
(number of incidence edges) di�erent from 4. In quad-meshes the most recurring
singularities are those of valence 3 or valence 5. We talk about “chart boundaries”
or “separatrices” when we have a line that connects a singularity with another sin-
gularity of the mesh. Using separatrices we can divide the mesh in quads called
“charts” or “domains”.

Figure 2.2: An example of a quad-mesh with singularities and chart boundaries (left) and
the same model with charts identi�ed by di�erent colors (right) taken from [14].

As explained in the survey [2], based on the number and the position of singu-
larities in a mesh, we can perform a subdivision of quad-meshes in four classes:

• Regular meshes: composed only by valence-4 vertices. They have no singular-
ities and they are useless in Computer Graphics because they don’t allow to
perform a good distortion of the mesh.

• Semi-regular meshes: there are singularities. It is simple to divide this type of
mesh in domains using chart boundaries. We assume that the number of
domains is much less than the number of faces of the mesh. Each vertex that
is inside a domain has valence 4 and each vertex that is in the chart boundary
may have valence 3, 4 or 5. This class of meshes is the most interesting for
several kind of Computer Graphics applications.

• Valence Semi-regular meshes: there are a lot of vertices with valence 4. Each
semi-regular mesh is a valence semi-regular mesh but the opposite is not
true. Semi-regular and valence semi-regular meshes are often included in the
same class. It can be useful to subdivide these two classes because it makes it
possible to define algorithms for the chart subdivision (by using semi-regular
meshes) and algorithms for the minimization of the singularities number (by
using valence semi-regular meshes instead).

6

• Unstructured meshes: the mesh has no structure and it is completely useless.
This type of mesh is often obtained by the direct transformation of a triangle-
mesh in a quad-mesh through the triangle union (two triangles become a
quad, an even number of triangles is required). In this case a post-processing
step is always required to give a structure to the mesh.

Figure 2.3: The quad-mesh classi�cation: Regular, Semi-regular, Valence semi-regular and
Unstructured meshes taken from [2].

Characteristics of a quad-mesh are:

• Quad quality: each angle of the mesh must be more or less 90◦ and opposite
edges of each quad must have more or less the same length.

• Regularity: the number of singularities. This parameter changes depending
on the application.

• Good placement of irregular vertices: this characteristic describes the placement
of singularities in a mesh. A good position of singularities allows to obtain a
good final quad-layout.

• Resolution adaptivity: in a quad mesh it is important to have the possibility
to adapt the resolution of the mesh (number of vertices and quads) in the
portions that require a higher number of details.

There are several application fields for quad-meshes. In Polygonal modeling and
Animation it is fundamental to have a quad-mesh that has a well-defined structure
(note that triangle-meshes are totally unstructured). Triangle-meshes don’t guar-
antee a good quality animation because it is not possible to define an edge flow
that matches the features of the character and its main curvatures. Quad-meshes
are more di�cult to create than triangle-meshes but they have more advantages.
When they have a good structure, and the edges of the mesh are perfectly aligned
with the main curvatures of the object, they guarantee a good quality animation

7

(i.e. without artifacts). Note that an unstructured quad-mesh is equivalent to a
triangle-mesh and it has no advantages for the animation.

Figure 2.4: A quad-mesh for the computer animation, taken from [2], of the “Big Buck
Bunny” movie, Blender Institute 2007 [5] .

Another application field for quad-meshes (very important for this thesis) is the
mesh domain subdivision called “Quad-Layout”. It is obtained by connecting the
mesh singularities through chart boundaries. Having a good quality quad-layout is
very important for many applications: in Game Development having a reduced but
representative set of quadrangular domains allows a representation and an anima-
tion management that is much more e�cient and less complex. A good quad-layout
is also important in other fields of Computer Graphics because it allows to repre-
sent complex objects with a simple geometry, for example the Texture-mapping is
made easier by a quadrangular chart subdivision. In general a good quad layout is
obtained through a good alignment of the mesh singularities. Today this research
topic is being considered not only for surface meshes but also for hex-meshes like
explained in [6].

There are di�erent approaches to compute a quad-layout. In 2011 Tarini et
al. proposed a method based on the topological simplification of the cross field in
input followed by a global smoothing [14]. In the same year Bommes et al. created
an algorithm which detects helices in a quad-mesh and is able to remove most
of them by applying a novel grid preserving the simplification operator which is
guaranteed to maintain an all-quadrilateral mesh [1]. In 2012 Campen et al. present
a theoretical framework and practical method for the automatic construction of
simple quad-layouts on manifold surfaces based on the careful construction of the
layout graph’s combinatorial dual [3]. In 2014 Campen et al. present a user-assisted
method for the interactive design of quad-layouts called Dual Strip Weaving [4]. In
2015 Usai et al. proposed a method to convert a tri-mesh in the relative quad-layout

8

using its curve skeleton to obtain a semi-regular quad-mesh [15]. In this thesis we
propose another approach to obtain an optimized quad-layout of a mesh (tri-mesh
or quad-mesh) using its polycube representation as an intermediate step.

Figure 2.5: Examples of quad-layouts taken from [15].

2.2 PolyCubes

PolyCubes are orthogonal polyhedra made up of only axis-aligned faces. They
were initially created as a support for the Texture-mapping [13]. In Computer
Graphics it is very important to have a compact representation of a shape and
polycubes make it possible to achieve this result by giving an explicit geometry
of the analyzed model. They are characterized by three important features: axis-
aligned faces, only 90◦ dihedral angles and planar faces. The most important
property of a polycube is the ability to represent the original shape in a simple
way. This allows to perform analysis and geometrical manipulation on a simple
shape instead of on a complex model.

Figure 2.6: Two examples of polycubes of the same model obtained with di�erent algo-
rithms, the �rst taken from [13] and the second taken from [10].

9

Polycubes are a good combination of the original shape of the model, its sim-
plification and topology preservation. Nowadays polycubes are a new research
topic with a large number of possible applications. The first application is texture-
mapping, as explained in [13]. Polycubes provide a mechanism that could be used
for seamless texture-mapping with low distortion by using the surface of the poly-
cube as the texture domain. A simplified example of this method is shown in the
Figure 2.7.

Figure 2.7: Example of texture-mapping described previously, taken from [13].

Another important application of polycubes is the creation of Hexahedral meshes,
important for finite element simulation. A polycube admits a trivial hex-mesh that
can be generated by gridding its interior. If a volumetric parameterization between
the polycube and the initial shape is available the connectivity of the hex-mesh can
be mapped back to the input shape, generating an high quality hexahedral mesh
[7].

Figure 2.8: Example of hex-meshing, taken from [7].

There are a lot of other scenarios in which polycubes can find use, for example
for the spline fitting or the mapping of a volume bound by a surface with general
topology onto a topologically equivalent base domain. Another important line of
research in which polycubes are useful are quad-only layouts. The coarse struc-
ture (optimized if possible) of polycubes makes it possible to obtain semi-regular
quad-meshes and quad-layout in a simple way. As we will see later this is the main
problem that this thesis aims to solve.

10

There are several algorithms to obtain polycubes with di�erent characteristics.
The first algorithm for the automatic computation of a polycube, the “Topology-
based" paradigm, was introduced by Lin et al. in 2008 [9]. In 2009 He et al.
proposed an alternative method based on the “Divide-and-conquer” paradigm [8].
In 2011 Gregson et al. investigated the problem of computing high-quality poly-
cubes in the context of hex-meshing using the “Deformation-based” algorithm [7]. In
2013 Livesu et al. proposed an innovative algorithm for the polycube extraction,
“PolyCut” [10], and this is the algorithm used in this thesis to compute the input
polycubes for our algorithm.

In Figure 2.9 some results of di�erent algorithms are shown. The first is obtained
with the divide-and-conquer algorithm and it can be seen that it generates too com-
plex domains with a high number of useless corners. The second is obtained with
the deformation-based approach and it produces more compact domains but un-
necessary charts and artifacts. The third result, the best among these, is obtained
with PolyCut and it is a good trade-o� between compactness and mapping distor-
tion.

Figure 2.9: Examples of polycubes obtained with di�erent algorithms, taken from [10].

A very simplified description of the PolyCut algorithm can be divided in four
steps:

• Initial Labelling : segmentation of the input mesh followed by a region extrac-
tion.

• Discrete Optimization: the previous segmentation is optimized in order to pro-
duce a valid polycube embedding.

• PolyCube Extraction: polycube vertex positions are defined and regions found
in the step one are projected into axis-aligned planes.

11

• Parametrization: the parametrization between the polycube and the original
input mesh is computed.

Figure 2.10: The four steps of the PolyCut algorithm, taken from [10].

12

3
Motivation

The aim of this thesis is the PolyCube Optimization to obtain quad-meshes and
quad-layouts that are more useful for Game Development and Animation.

This work is included into a pipeline as follows:

[3D model] → [polycube] → [polycube optimization] → [quad-layout]

The polycube extracted by the initial mesh can be used to obtain a quad-mesh of
the initial model (that can be a tri-mesh) and the relative quad-layout. This thesis
consists in the third step of this pipeline that makes it possible to create a quad-
mesh topologically equivalent to the initial model and a quad-layout with the lower
number of domains. The quad-layout found in the polycube can be easily mapped
in the resultant quad-mesh. The optimization proposed in this work consists in
the edges/faces alignment. The creation of a quad-layout in a polycube is obtained
through the extension of edges and faces (like separatrices) with the purpose of
identifying the quads. A simple example in the 2D space is shown in Figure 3.1:

Figure 3.1: An example in the 2D space of the initial model (left) and its optimization
(right).

13

As it is shown in this picture, the initial polygon (that represents a 2D approxi-
mation of the polycube relative to the mesh “Bimba”) has 17 domains. If the edges
alignment is performed, in particular if we align the two edges of the nape and the
edge of the shoulder with the one of the chin, the model has 12 domains.

In the 3D space the problem to solve is the same. The domains’ individuation
is performed through chart boundaries (separatrices) and the number of quads
depends on the alignment of the polycube’s faces. In the following picture the
polycube of the “Squirrel” model is shown: the initial number of domains is 26
and, after the purposed optimization, the final number of domains is 18.

Figure 3.2: An example in the 3D space of the initial model (left) and its optimization
(right).

Our approach to reach this goal consists in an algorithm that performs, in an
iterative way, the optimization of a mathematical model appropriately built. The
mathematical model is composed of an objective function (split in two parts) and
only linear constraints. We decided to solve the problem through a mathematical
model because it makes it possible to reach our goal in an e�cient, elegant and
robust way. In the next chapter the construction of the model used by our algorithm
is analyzed in detail.

14

4
The Mathematical Model

As we said in the previous chapter, solving our problem through a mathe-
matical model makes it possible to reach our goal in an e�cient, elegant

and robust way. The solution of this problem is the main part of an algorithm that
computes the problem until the convergence is reached (the complete algorithm is
explained in the next chapter). In this chapter we will describe the construction of
the mathematical model that we used in our approach, step by step.

4.1 The Objective function

The objective function is the most important part of this model because it allows
us to obtain a good trade-o� between the topological preservation and the align-
ment required to reach our goal. We split the objective function in two parts: one
takes care of the shape preservation called “Eshape” and the other takes care of
the edges/faces alignment called “Ealign”. These two parts, that we will explain in
detail, are multiplied by two scalar values α and β (varying between 0 and 1) to
make it possible to work with Eshape and Ealign with di�erent weights. The final
objective function is the following:

min e = α · Eshape + β · Ealign

4.1.1 Shape preservation

This portion of the objective function has the task of preserving the shape of the
polycube. It is a simple attraction between the variables of the problem and the
original vertices’ value. If we denote with V the set of vertices of a polycube we
can express the Eshape as follows:

15

Eshape =
∑
i∈V

[(xi − x̃i)2 + (yi − ỹi)2 + (zi − z̃i)2
]

In this formula xi, yi and zi represent respectively the variables of the problem
relative to the x-coordinate, y-coordinate and z-coordinate of the vertex i, instead
x̃i, ỹi and z̃i represent the original value of the vertex i coordinates. This portion
of the objective function is multiplied by an α scalar smaller than the β scalar of
the Ealign portion. If we suppose α = 1 (and β = 0 or a very small number) we
clearly obtain a polycube equal to the original in input.

4.1.2 Alignment

The most important part of the problem is the portion of the objective function
that we have called Ealign. This portion takes care of the edges/faces alignment
to reach our goal. In this section we will explain step by step how to find which
edges and faces can be aligned and the coordinate along which to perform this
alignment. As we explained earlier, one of the most important properties of a
polycube is the fact that edges and faces are “axis-aligned”. If we preserve this
property through opportune constraints we can reduce the edges/faces alignment
to vertices alignments. Indeed if we change the position of a vertex we change
the position of edges and faces that include it. For this reason we describe all the
alignments in terms of vertices. We denote with A the set of pairs of vertices we
want to align (along one or more coordinates) and we split it in three sub-sets: Ax

is the set of pairs of vertices that we want to align along the x-coordinate, Ay is
the set of pairs of vertices that we want to align along the y-coordinate and Az is
the set of pairs of vertices that we want to align along the z-coordinate. We can
express the Ealign as follows:

Ealign =
∑

(i, j)∈Ax

(xi − x j)2 +
∑

(i, j)∈Ay

(yi − y j)2 +
∑

(i, j)∈Az

(zi − z j)2

We now explain how to compute the set A and how to split it in the three sub-
set Ax, Ay and Az. The principle on which our approach is based is “to align local
neighbour vertices to remove the largest number of misalignments”. An e�cient way to find
neighbour vertices is the Voronoi Diagram. Through the Voronoi diagram extended
to the 3D space we are able to find the neighbours of a vertex by considering its
Voronoi cell and the cells adjacent to it. So we consider two vertices adjacent
if their Voronoi cells are adjacent. We want to align adjacent vertices along one

16

coordinate to perform the edges/faces alignment in the polycube. In Figure 4.1 we
show the 3D Voronoi diagram of the polycube of the “Squirrel” model taken from
our interactive tool (that will be described in the next chapter). In this image the
vertices of the polycube are shown in yellow, the edges in grey and the contours of
the Voronoi cells in light blue.

Figure 4.1: The Squirrel model polycube (left) and its 3D Voronoi diagram (right).

Once we found the Voronoi adjacencies we must perform a selection of them
and remove those that are useless for the modeling of our mathematical problem.
Obviously do not consider as adjacent vertices being end-points of the same edge.
They are already aligned along one coordinate and it is not possible to align them
along another coordinate without changing the edge orientation or without making
the edge length equal to zero (vertex collapse).

Another case that we must reject in the modeling of our problem is the adja-
cency between two vertices that are end-points of two edges that have the other
end-point in common (as it is shown in Figure 4.2). This situation is not interest-
ing if we work with polycubes because the pairs of vertices (A,B) and the pairs of
vertices (A,C) are already aligned along one coordinate and it is not possible to
align the pair (B,C) without losing the axis-align property or without having an
edge collapse.

17

Figure 4.2: An example of adjacency to reject.

We are not interested in external adjacencies either. It is useless to try to align
external adjacent vertices because their alignment doesn’t produce any reduction of
the domain’s number. Identifying if an adjacency (that we can see as an imaginary
edge) is internal or external to a polygon that doesn’t only have convex faces is not
an easy problem. To do this we must evaluate all possible cases that we can have.
We can see that an edge is internal to a polygon if its direction results internal to the
polygon for both its end-points. In a polycube we could have four di�erent types of
end-points for an edge representing an adjacency. We consider the dihedral angles
between the faces that have the considered end-point in common to discriminate
these cases. Below we show all possible cases with their relative Look-Up tables. In
the following images the red arrow represents the normal of faces and the yellow
vertex is the considered end-point. In the table we have, in the 1st , 2nd and 3rd

column, a “+” if the direction of the edge is concordant with the normal of the face
and a “-” if not. In the 4th column we have an “E” if the edge is external to the
polygon and “I” if it is internal.

Figure 4.3: 3 convex dihedral an-
gles.

A B C Res

+ + + E
+ + - E
+ - + E
+ - - E
- + + E
- + - E
- - + E
- - - I

Table 4.1: Look-Up Table of case 1.

18

Figure 4.4: 3 concave dihedral an-
gles.

A B C Res

+ + + E
+ + - I
+ - + I
+ - - I
- + + I
- + - I
- - + I
- - - I

Table 4.2: Look-Up Table of case 2.

Figure 4.5: 2 convex dihedral angles
and 1 concave dihedral angle.

A B C Res

+ + + E
+ + - E
+ - + E
+ - - E
- + + E
- + - I
- - + I
- - - I

Table 4.3: Look-Up Table of case 3.

Figure 4.6: 2 concave dihedral an-
gles and 1 convex dihedral angle.

A B C Res

+ + + E
+ + - E
+ - + E
+ - - I
- + + I
- + - I
- - + I
- - - I

Table 4.4: Look-Up Table of case 4.

19

The vertices that are end-points of the adjacencies left after the aforementioned
selection (that represents possible alignments) constitute the set A. The last prob-
lem to solve to obtain the sub-sets Ax, Ay and Az is to determine the pairs (vi,v j) that
allow an alignment and to understand, for each pair, the coordinate along which to
perform the alignment (given a couple of vertices they can only be aligned along
one coordinate). If we found more than one possible alignment for the vertex vi

along the same coordinate we have to take a choice: the best thing to do is to align
the vertex vi with the vertex v j that has the smaller delta along the considered
coordinate.

Figure 4.7: An example of possible multiple alignments.

In Figure 4.7 a case of multiple possible alignments is shown. The vertex v1
can be aligned with the vertex v2 and with the vertex v3 along the y-coordinate.
If we insert both these pairs in the objective function the solver tries to align v1
and v2 and also v1 and v3 along the same coordinate and it probably fails in both
these cases. We can absolutely make a choice and since in this case the ∆y(v1, v3)
is smaller than the ∆y(v1, v2) we insert the pair (v1,v3) in the set Ay. Note that
if we decide to align the vertex v1 with the vertex v3 along the y-coordinate it is
very important not to try the alignment of v3 with another vertex along the same
coordinate. This procedure is repeated for each vertex present in the set A and, for
each of them, we can only create a single pair for each coordinate (it is impossible
to align a vertex with more than one other vertex along the same coordinate). So
we create three sets containing the same possible alignments but sorted for di�erent
coordinates so that it is possible to choose the best one for each vertex.

Figure 4.8: The previous example after the alignment.

20

4.2 Constraints

We have seen how to create the objective function for our mathematical model.
We now explain what kind of problems we must solve through the addition of
constraints. We have to preserve the property of the input polycube and we have to
avoid artifacts like edge or vertex collapse. Remember that the problem is modelled
and solved more than once in our algorithm (iterative approach) so it is important
to preserve, through appropriate constraints, all results obtained in the previous
steps. Note that in our mathematical problem all constraints are linear.

4.2.1 Collinearity of the end-points

One of the essential properties of a polycube is that its edges and faces are axis-
aligned. We have seen before that in the Ealign portion of the objective function we
try to align pairs (vi,v j) of vertices along one coordinate. To do this the mathemat-
ical solver of our problem assigns the same coordinate to vi and v j . For this reason
it is important to add a constraint that, for each edge of the polycube, secures that
its end-points preserve the collinearity.

Figure 4.9: In the �rst image we have two vertices that want to reach an alignment, in the
second image we have the alignment without constraints and in the third image we have
the correct alignment conditioned by constraints.

We denote with E the set of pairs (vi,v j) that represent the end-points of the
edges of the polycube and we split it in three sub-sets: E⊥x is the sub-set of edges
perpendicular to the x-axis, E⊥y is the sub-set of edges perpendicular to the y-
axis and E⊥z is the sub-set of edges perpendicular to the z-axis. We can add the
following constraints to the problem:

∀(i, j) ∈ E⊥x vi(x) = v j(x)
∀(i, j) ∈ E⊥y vi(y) = v j(y)
∀(i, j) ∈ E⊥z vi(z) = v j(z)

where vi(x), vi(y) and vi(z) denote the variables of the problem relative respectively
to the x-coordinate, y-coordinate and z-coordinate of the vertex vi.

21

4.2.2 Minimum length of the edges

Another problem that we could have during the solving of the mathematical model
is the collapse of the end-points of an edge. In a polycube the end-points of an edge
have two equal coordinates and if there are no constraints that avoid the equality
of the third coordinate we could lose an edge. To solve our problem we use an
Integer solver that computes a resultant polycube with only integer coordinates.
This is important to obtain the final quad-mesh in an easy way from the resultant
polycube. For this reason the smallest length that an edge can have is 1. We denote,
as explained before, E as the set of pairs (vi,v j) that represent the end-points of the
edges of the polycube and we split it in three sub-sets: E‖x is the sub-set of edges
parallel to the x-axis, E‖y is the sub-set of edges parallel to the y-axis and E‖z is the
sub-set of edges parallel to the z-axis. We can add the following constraints to the
problem:

∀(i, j) ∈ E‖x i f (vi(x) > v j(x)) then vi(x) − v j(x) ≥ 1 else v j(x) − vi(x) ≥ 1
∀(i, j) ∈ E‖y i f (vi(y) > v j(y)) then vi(y) − v j(y) ≥ 1 else v j(y) − vi(y) ≥ 1
∀(i, j) ∈ E‖z i f (vi(z) > v j(z)) then vi(z) − v j(z) ≥ 1 else v j(z) − vi(z) ≥ 1

4.2.3 Vertices already aligned

As we said previously the solution to this problem is repeated more than once
by the algorithm in an iterative way. With the actual formulation of the objective
function we could have the following problem: at the step n the edges i and j are
aligned but at the step n + 1 the edge j is aligned with the edge k and misaligned
with the edge i. Another problem that we could have is that during the problem
solving two edges that were aligned in the original polycube are misaligned. To
solve this problem we must preserve all alignments that were already present at
the step n − 1 by using constraints for the problem modelled at the step n. In
the Section 4.1.2 we have formalized the set A to explain the construction of the
Ealign. The set A is the set of pairs of vertices we want to align found through the
Voronoi adjacencies. In this set we also have pair of vertices (vi,v j) already aligned
in the previous step. So we define the set A′, with A′ ⊆ A, as the set of pairs of
vertices already aligned for at least one coordinate. We can now add the following
constraints to the problem :

∀(i, j) ∈ A′x vi(x) = v j(x)
∀(i, j) ∈ A′y vi(y) = v j(y)
∀(i, j) ∈ A′z vi(z) = v j(z)

22

where A′x is the sub-set of pairs of vertices already aligned along the x-coordinate,
A′y is the sub-set of pairs of vertices already aligned along the y-coordinate and A′z
is the sub-set of pairs of vertices already aligned along the z-coordinate.

4.2.4 Avoiding the collapse of the vertices

Another important problem to avoid is the collapse of vertices that are not end-
points of the same edge. In particular we want to avoid that, during the alignment,
vertices that appear in a pair of the set A all reach the same coordinate value. In this
case we don’t have an edge collapse but the resultant polycube is not manifold (we
have a vertex collapse). To solve this problem we add to our model a particular
constraint that creates a plane between the two vertices that are attracting each
other. We insert this plane in the middle point of the imaginary edge that represents
the Voronoi adjacency between the two end-points and we limit the movement of
each vertex in the semi-plane delimited by this plane. In the next figure we show
the situation in which the vertex A tries to align with the vertex B and in the middle
point of their "attraction-edge" the plane p is inserted. The vertex A can only move
towards B in the left semi-plane and the vertex B can only move towards A in the
right semi-plane. The integer solver makes sure that their coordinates are not all
the same.

Figure 4.10: An example of plane inserted between two vertices to avoid their collapse.

Given the plane equation ax+by+cz+d = 0 and an imaginary edge between the
vertices A and B, that we call e, we must create a plane passing through the middle
point of e and having the same direction of e. We denote with m = (xm, ym, zm) the
middle point of e and with d = (d1, d2, d3) the direction of e (it is orthogonal to the
plane). The equation of the plane we are interested in is the following:

d1x + d2y + d3z − (d1xm + d2ym + d3zm) = 0

23

We can now replace the x, y and z with the coordinate values of A to find in
which semi-plane A is and to create two constraints: one to secure A in its semi-
plane and one to secure B in the opposite semi-plane. So for each pair of vertices
(vi,v j) of the set A previously described we perform this operation and we insert
two constraints respectively for the vertices vi and v j :

∀(i, j) ∈ A :

i f (d1ṽi(x) + d2ṽi(y) + d3ṽi(z) − (d1xm + d2ym + d3zm) < 0)
then

{
d1vi(x) + d2vi(y) + d3vi(z) − (d1xm + d2ym + d3zm) < 0
d1v j(x) + d2v j(y) + d3v j(z) − (d1xm + d2ym + d3zm) > 0

}
else i f (d1ṽi(x) + d2ṽi(y) + d3ṽi(z) − (d1xm + d2ym + d3zm) > 0)

then
{

d1vi(x) + d2vi(y) + d3vi(z) − (d1xm + d2ym + d3zm) > 0
d1v j(x) + d2v j(y) + d3v j(z) − (d1xm + d2ym + d3zm) < 0

}
where ṽi(x), ṽi(y) and ṽi(z) denote respectively the x-coordinate, the y-coordinate
and the z-coordinate of the original vertex vi while vi(x), vi(y) and vi(z) denote
the variables of the problem relative to the x-coordinate, the y-coordinate and the
z-coordinate of the vertex vi in the solution.

4.2.5 Dummy vertices and edges

The last problem we want to solve is the following: if we look at the Figure 4.11
of a test-polycube and its visualization in our interactive tool we can note that if
the red vertices try to align we have no constraints that prevent the left part of the
shape from going through itself.

Figure 4.11: An example of possible shape collapse.

We now introduce the idea of dummy vertices and dummy edges. A dummy vertex
is an imaginary vertex obtained by the intersection between the extension of an
edge and a face (or another edge) of the polycube. A dummy edge, on the other
hand, is an imaginary edge that connects an end-point of a real edge of the polycube

24

to the new found dummy vertex. If we compute all possible dummy vertices and
edges in our input polycube we can impose, in the mathematical model, that the
dummy edge length must be equal or bigger than 1. In this way we can avoid
collapse between vertices and edge, vertices and faces, edges and edges. In the
following figures we explain three di�erent cases; in the first image the output of
the optimization of the previous model without using the dummies, in the second
the computation of the dummies in the original model (dummy edges are coloured
in black) and in the third we show the optimization considering dummy constraints.
As can be seen in the first picture in the upper part of the polycube we have edges
collapse and in the left part of the polycube we have faces intersections. In the right
image, instead, the red vertices (and relative edges and faces) are now correctly
aligned.

Figure 4.12: Examples of dummies’ problem.

We define D as the set of dummy vertices. To formalize the described con-
straints we need to define two sets: DE and DF. DE is the set of dummy edges
composed by pairs (vi,vd

j) when vi ∈ V (V is the set of the original vertices of the

polycube) and vd
j ∈ D. Now we can split the set DE in three sub-sets as follows:

DE‖x is the sub-set of dummy edges parallel to the x-axis, DE‖y is the sub-set of
dummy edges parallel to the y-axis and DE‖z is the sub-set of dummy edges parallel
to the z-axis. It is now possible to secure the length of dummy edges greater than
or equal to 1 with the following constraints:

∀(i, j) ∈ DE‖x i f (vi(x) > vd
j (x)) then vi(x) − vd

j (x) ≥ 1 else vd
j (x) − vi(x) ≥ 1

∀(i, j) ∈ DE‖y i f (vi(y) > vd
j (y)) then vi(y) − vd

j (y) ≥ 1 else vd
j (y) − vi(y) ≥ 1

∀(i, j) ∈ DE‖z i f (vi(z) > vd
j (z)) then vi(z) − vd

j (z) ≥ 1 else vd
j (z) − vi(z) ≥ 1

These constraints on their own are not enough to obtain a solution. To solve
the problem in a complete way we must attach the dummy vertices in the face or
in the edge on which it lies in the original polycube (we can always use edges). To

25

do this we define the set DF composed of pairs (vd
i ,e j) when vd

i ∈ D and ei ∈ E
(see the Section 4.2.1 for the definition of E and its sub-sets). We can now add the
following constraints:

∀(i, j) ∈ DF

i f e j ∈ E⊥x then vd
i (x) = e j(x)

i f e j ∈ E⊥y then vd
i (y) = e j(y)

i f e j ∈ E⊥z then vd
i (z) = e j(z)

where e j(x) denotes the x-coordinate of the e j edge perpendicular to the x-axis, with
e j(y) we denote the y-coordinate of the e j edge perpendicular to the y-axis and with
e j(z) we denote the z-coordinate of the e j edge perpendicular to the z-axis.

4.2.6 Integer coordinates

We decided to solve our problem with an integer solver. This means that after
the solution of the problem both vertices and dummy vertices have integer values
of coordinates. This is important because in this way we can easily compute a
quad-mesh starting from the optimized polycube. We impose a regular grid over
the polycube and we obtain the quad-mesh in which the quad-layout is computed.
To have this kind of result we add the last two constraints:

∀i ∈ V vi(x) ∈ Z, vi(y) ∈ Z, vi(z) ∈ Z
∀ j ∈ D vd

j (x) ∈ Z, vd
j (y) ∈ Z, vd

j (z) ∈ Z

where vi is an original vertex of the polycube and vd
j is a dummy vertex. In brackets

we denote a specific coordinate.

4.3 The �nal model

We now report the complete mathematical model in extended version. Before doing
this, we list all sets, sub-sets and other elements used in the problem formulation:

• V is the set of all vertices of the polycube.

• E is the set of all edges of the polycube. It can be split in E⊥x, E⊥y and E⊥z

(see Section 4.2.1) or in E‖x, E‖y and E‖z (see Section 4.2.2).

• A is the set of pairs of vertices that could reach an alignment along one
coordinate. It can be split in Ax, Ay and Az (see Section 4.1.2).

• A′ is the set of pairs of vertices already aligned along one coordinate. It can
be split in A′x, A′y and A′z (see Section 4.2.3).

26

• D is the set of dummy vertices of the polycube (see Section 4.2.5).

• DE is the set of dummy edges composed by pairs of original vertices and
dummy vertices. It can be split in DE‖x, DE‖y and DE‖z (see Section 4.2.5).

• DF is the set of pairs that are composed of a dummy vertex and an original
edge of the polycube (see Section 4.2.5).

• d = (d1, d2, d3) is the direction of an imaginary edge that connects two vertices
that we want aligned (see Section 4.2.4).

• m = (xm, ym, zm) is the middle point of an imaginary edge that connects two
vertices that we want aligned (see Section 4.2.4).

The complete mathematical model is:

min e = α *
,

∑
i∈V

[(xi − x̃i)2 + (yi − ỹi)2 + (zi − z̃i)2
]+
-
+ β

*..
,

∑
(i, j)∈Ax

(xi − x j)2 +
∑

(i, j)∈Ay

(yi − y j)2 +
∑

(i, j)∈Az

(zi − z j)2+//
-

subject to:

∀(i, j) ∈ E⊥x vi (x) = v j (x)
∀(i, j) ∈ E⊥y vi (y) = v j (y)
∀(i, j) ∈ E⊥z vi (z) = v j (z)
∀(i, j) ∈ E‖x i f (vi (x) > v j (x)) then vi (x) − v j (x) ≥ 1 else v j (x) − vi (x) ≥ 1
∀(i, j) ∈ E‖y i f (vi (y) > v j (y)) then vi (y) − v j (y) ≥ 1 else v j (y) − vi (y) ≥ 1
∀(i, j) ∈ E‖z i f (vi (z) > v j (z)) then vi (z) − v j (z) ≥ 1 else v j (z) − vi (z) ≥ 1

∀(i, j) ∈ A′x vi (x) = v j (x)
∀(i, j) ∈ A′y vi (y) = v j (y)
∀(i, j) ∈ A′z vi (z) = v j (z)
∀(i, j) ∈ A :
i f (d1ṽi (x) + d2ṽi (y) + d3ṽi (z) − (d1xm + d2ym + d3zm) < 0)
then

{
d1vi (x) + d2vi (y) + d3vi (z) − (d1xm + d2ym + d3zm) < 0
d1v j (x) + d2v j (y) + d3v j (z) − (d1xm + d2ym + d3zm) > 0

}
else i f (d1ṽi (x) + d2ṽi (y) + d3ṽi (z) − (d1xm + d2ym + d3zm) > 0)
then

{
d1vi (x) + d2vi (y) + d3vi (z) − (d1xm + d2ym + d3zm) > 0
d1v j (x) + d2v j (y) + d3v j (z) − (d1xm + d2ym + d3zm) < 0

}
∀(i, j) ∈ DE‖x i f (vi (x) > vd

j
(x)) then vi (x) − vd

j
(x) ≥ 1 else vd

j
(x) − vi (x) ≥ 1

∀(i, j) ∈ DE‖y i f (vi (y) > vd
j
(y)) then vi (y) − vd

j
(y) ≥ 1 else vd

j
(y) − vi (y) ≥ 1

∀(i, j) ∈ DE‖z i f (vi (z) > vd
j
(z)) then vi (z) − vd

j
(z) ≥ 1 else vd

j
(z) − vi (z) ≥ 1

∀(i, j) ∈ DF

i f e j ∈ E⊥x then vd
i
(x) = e j (x)

i f e j ∈ E⊥y then vd
i
(y) = e j (y)

i f e j ∈ E⊥z then vd
i
(z) = e j (z)

∀i ∈ V vi (x) ∈ Z, vi (y) ∈ Z, vi (z) ∈ Z
∀ j ∈ D vd

j
(x) ∈ Z, vd

j
(y) ∈ Z, vd

j
(z) ∈ Z

27

28

5
Algorithms and Implementation

We have described, in the previous chapters, the problem we want to solve
and the mathematical model that we want to use. In this chapter we

will describe in a detailed way the algorithm that uses the mathematical model to
perform the polycube optimization. We also illustrate the interactive tool that we
developed to see and follow the progress of the algorithm step by step.

5.1 The �nal algorithm

Our final algorithm has the purpose to perform the polycube optimization de-
scribed in Chapter 3 by modeling and solving the mathematical model described in
Chapter 4. Here is a pseudo-code version of the algorithm:

Input : A polycube P
Output: A quad-mesh Q of the optimized polycube P’

1 P ← loadPolyCube(model .obj);
2 (α, β) ← readValues();
3 repeat
4 D ← computeDummy(P);
5 VD ← computeVoronoiDiagram(P);
6 A ← computeVoronoiAdjacencies(P, VD);
7 M ← createModel(P, A);
8 P’ ← optimize(M, α, β);
9 until (convergence OR max_step);

10 P’ ← finalOptimization(P’);
11 Q ← computeQuadMesh(P’);

29

We now explain the algorithm we have developed, step by step, by referenc-
ing the pseudo-code. We use the bunny polycube model as an example to better
explain the di�erent steps of the algorithm with some references to the implemen-
tation and the library we used. Each screenshot in this section is made by using
our interactive tool (described later).

Input & Output Our algorithm takes a polycube model as input and gives the
quad-mesh of the optimized polycube as output (with integer coordinates). In this
example we use the Bunny model and its polycube.

Figure 5.1: The Bunny model and its polycube representation obtained by [10].

loadPolyCube (line 1) This function loads a polycube model in .obj or .ply format.
The polycube is loaded in a DCEL data structure and navigated to extract its
corners and edges and to compute its faces. Polycubes in input have a number
of triangles which varies from a few thousand up to hundreds of thousand. We
only extract the essential information through this function. In our algorithm, we
only use corners, edges and faces (a face is an axis-aligned polygon that is not
necessarily convex) to decrease a big part of the computational complexity.

Figure 5.2: The Bunny polycube in our interactive tool, after the essential information is
extracted.

30

readValues (line 2) As explained in Section 4.1 we have split the objective function
in two portions: one to preserve the topology of the model (Eshape) and one to per-
form the alignment (Ealign). We have also inserted a system of weights to confer
di�erent importance to the di�erent portions of the function. We denote the scalar
number multiplied for the Eshape with α and the scalar number multiplied for the
Ealign with β. This function allows the user to insert the α-value and the β-value
before launching the algorithm. We inserted two sliders in our tool to give the user
the possibility to set these values.

computeDummy (line 4) This function has the task to compute dummy vertices
and dummy edges (see Section 4.2.5). For each edge of the polycube we trace its
extension until it intersects a face or another edge of the polycube. For each in-
tersection we create a new dummy vertex and we take note of its coordinates and
of the edge/face it has intersect. The function takes the polycube as input and re-
turns the set A with the described information. All this information is used in the
construction of the model (to impose the relative constraints). In the next figure
we show the dummy vertices and the dummy edges in black.

Figure 5.3: The Bunny polycube in our interactive tool, after the dummy edges and vertices
computation.

computeVoronoiDiagram (line 5) This function computes the Voronoi diagram
using the vertices of the input polycube as sites. To compute the diagram we use
the Voro++ library [12]. Voro++ is one of the most famous open source software
libraries written in C++ for the computation of the Voronoi diagram and it has
an interface that can be used to carry out many types of Voronoi computations.
We integrated its code in our interactive tool and, particularly, in this function.
The computeVoronoiDiagram function takes the polycube as input and returns the
Voronoi diagram as a POV-Ray file. By using a parser for this file, we read the

31

vertices of the Voronoi cells and their boundaries. In the next figure the Voronoi
cells built around the vertices of the polycube are shown in blue.

Figure 5.4: The Bunny polycube in our interactive tool, after the Voronoi diagram compu-
tation.

computeVoronoiAdjacencies (line 6) Using the Voronoi diagram computed in the
previous step, this function computes all the Voronoi adjacencies of the vertices of
the polycube. The function takes the polycube and the Voronoi diagram as input
and returns the set A. This set is used for the construction of the Ealign in the
objective function of the mathematical model, as explained in the Section 4.1.2,
and for the imposition of the constraints as explained in Section 4.2.3 and Section
4.2.4. In the next figure we show the temporarily ignored adjacencies or the already
aligned pairs of vertices in orange, the adjacencies used to try the alignment along
the x-axis in red, the adjacencies used to try the alignment along the y-axis in blue
and, lastly, the adjacencies used to try the alignment along the z-axis in green.

Figure 5.5: The Bunny polycube in our interactive tool, after the Voronoi adjacencies
computation.

32

createModel & optimize (line 7 and 8) The createModel function has the task to
automatically create the mathematical model with the objective function and the
constraints described in Chapter 4, while the optimize function has the task to solve
the model based on the values of α and β as explained in Section 4.1. To create
and solve the mathematical model we used the Gurobi Optimizer 6.0 [11]. The
Gurobi Optimizer is a state of the art solver for mathematical programming. The
solver in the Gurobi Optimizer includes a set of di�erent solvers for linear pro-
gramming, quadratic programming, mixed-integer linear programming, quadrati-
cally constrained programming and many others. Gurobi supports interfaces for
a variety of programming and modeling languages like C, C++, Java, MATLAB
and others. We integrated this library (with a free license for students) in our
interactive tool and in particular in this function that takes the polycube and the
set A computed in the previous step as input and returns an optimized polycube.
Through the Gurobi’s instruction set we can easily make the objective function
and the constraints (expressed in extended form and not in the matrix form) of
the model and, with a single instruction, we can optimize it (for more informa-
tion about the code see the Appendix A). In the next figure we show the first step
of the optimization of the polycube used as an example model (remember that
this portion of the algorithm is repeated several times until the convergence or the
achievement of the maximum number of allowed steps is reached).

Figure 5.6: The Bunny polycube in our interactive tool, after the �rst step of optimization.

�nalOptimization (line 10) After the repeated optimization of the model we ob-
tain an optimized polycube as output. This polycube is topologically equivalent to
the input polycube and has a greater number of aligned vertices. With the �nalOp-
timization function we want to perform the last optimization step with a slightly
di�erent formulation of the problem. In particular, the aim of this function is to
make the obtained polycube as similar as possible to the original shape but without
losing any alignment. To reach this goal we call the optimize function for the last

33

time, passing the values of α = 1 and β = 0. In this way the objective function
of the mathematical model is transformed as follows, without weights and without
the Ealign portion:

min e =
∑
i∈V

[(xi − x̃i)2 + (yi − ỹi)2 + (zi − z̃i)2
]

In the next figure the bunny model after two steps of classical optimization and the
�nalOptimization step is shown. The resultant polycube is the final polycube.

Figure 5.7: The Bunny polycube in our interactive tool, after the �nal optimization step.

computeQuadMesh (line 11) This function takes the final optimized polycube
as input and returns the relative quad-mesh. The quad-mesh is obtained easily
by superimposing a regular grid over the polycube and checking if each resultant
quad is internal or external to the model. The resultant quad-mesh is saved in an
.obj file and it is ready for the computation of the relative quad-layout and for the
quad count.

Figure 5.8: The Bunny polycube in our interactive tool, after the quad-mesh computation.

34

We have explained all the functions of our algorithm. Note that the functions
computeDummy, computeVoronoiDiagram, computeVoronoiAdjacencies, createModel and
optimize are reapeated until the verification of a logical condition:

(convergence OR max_step)

On the occurrence of one of these conditions the optimization part of the algorithm
ends and the final steps are performed. The convergence condition is computed by
counting, in each optimization step, the number of obtained alignments (we denote
it with na). When the na at the step i is equal to 0 we have achieved the convergence
and the computation goes to the final steps. The max_step condition, on the other
hand, is true when the number of allowed maximum iterations (previously decided)
is reached. In this case the computation goes to the final step but the algorithm
doesn’t return a valid optimized polycube. In our tests, this condition was never
met.

5.2 The interactive tool

We now shortly describe the interactive tool we have realized to execute and analyze
the algorithm progress step by step. In the following figure the User Interface with
a series of commands for the manipulation of the algorithm is shown:

Figure 5.9: Screenshot of the UI of our interactive tool.

35

The tool and the algorithm are developed with the C++ language and the QT
5.3.1 library, using the IDE QTCreator 3.1.2 (open-source). The tool presents a big
canvas in the left where the user can see the polycube (in a stylized version with
only vertices and edges showing) and all transformations and auxiliary operations
that the algorithm does (Voronoi diagram, dummy vertices and edges etc.). The
algorithm can be run step by step by using a series of buttons and check-buttons
that allows the user to decide when to perform the step and what to see about the
current step and the previous steps.

Figure 5.10: Commands to run the algorithm step by step.

With the optimization panel the user can choose the values about the shape
preservation and the alignment (α and β values explained in Section 4.1. The user
can later continue with the optimization step and observe the results. Two displays
show the optimization step and the numbers of alignments performed in the current
step. If the user is satisfied with the current optimization step he can save it and
decide whether to perform another optimization step or to proceed with the final
optimization.

Figure 5.11: Commands to run the optimization steps of the algorithm.

The tool allows the user to guide the algorithm in each of its steps but it also al-
lows him to compute the entire algorithm in a single step. The user can load the

36

polycube, select the desired values of shape and alignment and click the �nalOp-
timization button to obtain the final result directly.

When the algorithm is finished (but also in the intermediate steps) it is possible
to compute the quad-mesh of the resultant polycube and to save it in an .obj file
through the dedicated panel.

Figure 5.12: Commands to compute the quad-mesh of the optimized polycube.

37

38

6
Results

After explaining the problem we want to solve, the mathematical model that
we modeled and the algorithm that uses it, we want to show some results

with real models. The tool has been tested on several input polycubes obtained
from di�erent types of 3D models including classical 3D models, 3D scans, en-
gineered shapes and already optimized polycubes (the “Bimba” model case). We
report the results about some of them and, for each model, we report the results of
the algorithm executed step by step. For each test we show the original model, the
quad-layout computed on the initial polycube (obtained by the PolyCut algorithm)
and the quad-layout computed on the polycube optimized by using our algorithm.
Through a table we report the following data for each step of all tests: step is the
step number (when the step number is “f” we mean the final optimization step),
Eshape is the value of the α number used as a weight for the shape preservation
in the objective function, Ealign is the value of β number used as a weight for the
alignment portion of the objective function, # align. is the number of alignments
performed at the step i and time is the time used by the solver to optimize the
model at the step i (in seconds). In the lower part of the table we report the
data about the final results: # orig. quad is the number of original quads in the
input polycube, # opt. quad is the number of quads computed in the optimized
polycube, tot . align. is the total number of the alignments performed during the
optimization, % red. is the percentage of reduction of the quad number from the
input polycube to the optimized polycube and tot . time is the overall optimization
time (in seconds).

The tests have been performed on a MacBook Pro 2015 with an Intel Core i5
dual-core with 2,7 GHz and 8 GB of RAM, so the time reported in the following
tables refers to this model.

39

Figure 6.1: The Squirrel model and its polycube (left), the initial quad-layout (center) and
the optimized quad-layout (right).

Squirrel

step Eshape Ealign # align. time (sec)
1 0.1 1 2 0.004688
2 0.1 1 0 0.004093
f 1 0 / 0.003679

results
orig. quad # opt. quad tot. align. % red. tot. time (sec)

26 18 2 30.77 0.012460

Table 6.1: Results of the optimization of the Squirrel polycube.

Figure 6.2: The Armadillo model and its polycube (left), the initial quad-layout (center)
and the optimized quad-layout (right).

Armadillo

step Eshape Ealign # align. time (sec)
1 0.2 1 13 0.841866
2 0.2 1 5 0.172275
3 0.2 1 0 0.017098
f 1 0 / 1.326690

results
orig. quad # opt. quad tot. align. % red. tot. time (sec)

952 438 18 53.99 2.357929

Table 6.2: Results of the optimization of the Armadillo polycube.

40

Figure 6.3: The Bunny model and its polycube (left), the initial quad-layout (center) and
the optimized quad-layout (right).

Bunny

step Eshape Ealign # align. time (sec)
1 0.1 1 7 0.064626
2 0.1 1 3 0.033247
3 0.1 1 0 0.032253
f 1 0 / 0.105301

results
orig. quad # opt . quad tot . align. % red. tot . time (sec)

310 156 10 49.68 0.235427

Table 6.3: Results of the optimization of the Bunny polycube.

Figure 6.4: The Bone model and its polycube (left), the initial quad-layout (center) and the
optimized quad-layout (right).

Bone

step Eshape Ealign # align. time (sec)
1 0.1 1 4 0.065363
2 0.1 1 0 0.038630
f 1 0 / 0.043966

results
orig. quad # opt . quad tot . align. % red. tot . time (sec)

102 80 4 21.57 0.147959

Table 6.4: Results of the optimization of the Bone polycube.

41

Figure 6.5: The Homer model and its polycube (left), the initial quad-layout (center) and
the optimized quad-layout (right).

Homer

step Eshape Ealign # align. time (sec)
1 0.1 1 8 0.950295
2 0.1 1 0 0.028333
f 1 0 / 13.77570

results
orig. quad # opt. quad tot. align. % red. tot. time (sec)

260 202 8 22.31 14.754328

Table 6.5: Results of the optimization of the Homer polycube.

Figure 6.6: The Bimba model and its polycube (left), the initial quad-layout (center) and
the optimized quad-layout (right).

Bimba

step Eshape Ealign # align. time (sec)
1 0.1 1 0∗ 0.054505
f 1 0 / 0.030028

results
orig. quad # opt. quad tot. align. % red. tot. time (sec)

84 84 0∗ 0.0∗ 0.084533

Table 6.6: Results of the optimization of the Bimba polycube.

∗ The Bimba polycube was already optimal before the algorithm application (all possible

aligments were already done).

42

Figure 6.7: The Dragon model and its polycube (left), the initial quad-layout (center) and
the optimized quad-layout (right).

Dragon

step Eshape Ealign # align. time (sec)
1 0.2 1 5 0.254485
2 0.2 1 2 0.101568
3 0.2 1 1 0.044433
4 0.2 1 0 0.026913
f 1 0 / 0.062079

results
orig. quad # opt . quad tot . align. % red. tot . time (sec)

396 210 8 46.97 0.489478

Table 6.7: Results of the optimization of the Dragon polycube.

Figure 6.8: The Shape model and its polycube (left), the initial quad-layout (center) and
the optimized quad-layout (right).

Shape

step Eshape Ealign # align. time (sec)
1 0.1 1 2 0.388350
2 0.1 1 0 0.006715
f 1 0 / 0.045978

results
orig. quad # opt . quad tot . align. % red. tot . time (sec)

150 112 2 25.33 0.441043

Table 6.8: Results of the optimization of the Shape polycube.

43

We show here a few significant portions of some polycubes in which the align-
ment of the vertices and the quads’ number reduction is quite clear. In particular,
in the next figures, the Dragon’s face, the Armadillo’s back and the Bunny’s tail are
shown (in the next chapter another example relative to Homer’s hand is shown in
Figure 7.1).

Figure 6.9: The Dragon’s face in the original model (left), in the initial polycube (center)
and in the optimized polycube (right).

Figure 6.10: The Armadillo’s back in the original model (left), in the initial polycube
(center) and in the optimized polycube (right).

Figure 6.11: The Bunny’s tail in the original model (left), in the initial polycube (center)
and in the optimized polycube (right).

44

We now analyse the percentage of reduction of the quads’ number in the quad-
layouts (the “% red.” column in the tables). If we observe the quads’ number in
the original polycube and compare it to its optimized version (the “# orig. quad”
and the “# opt. quad” columns in the previous tables) we note that the percentage
of reduction is related to the initial number of misalignments in the original shape
of the polycube. In the following histogram the percentage of the quads’ number
reduction is shown:

30.77%Squirrel
53.99%Armadillo

49.68%Bunny
21.57%Bone
22.31%Homer

0.0%Bimba
46.97%Dragon

25.33%Shape

0% 20% 40% 60% 80% 100%
Percentage of reduction of the quads’ number.

The execution time is another good result that we have achieved. The total time
used by the algorithm to perform the optimization (the “tot . time” column in the
previous tables) ranges from a fraction of a second to a few seconds (an exception
is the Homer polycube that requires about 14 seconds). In the following histogram
the total time required for the optimization (in seconds) is shown:

0.01Squirrel
2.36Armadillo

0.24Bunny
0.15Bone

14.75Homer
0.08Bimba
0.49Dragon
0.44Shape

0 2 4 6 8 10 12 14 16
Total time (sec).

45

46

7
Conclusions

The purpose of this thesis was to optimize a polycube to obtain an opti-
mized quad-layout. We have presented a polycube optimization algorithm

based on the construction and the solution of a mathematical model in an iterative
way. Our approach generates, in most cases, an optimized polycube that can be
transformed in an optimized quad-layout. The obtained quad-layout can be easily
mapped to the original model (the one from which the initial polycube has been
extracted). We have obtained good results, as it is shown in the previous chap-
ter, with a good trade-o� between the shape preservation and the vertices/edges
alignment. The percentage of reduction of the quads number in the quad-layout
(obtained from the optimized polycube) depends on the number of misalignments
of the original polycube. Higher the number of misaligned vertices and edges in
the original polycube, higher the number of possible alignments that the algorithm
can perform. In the previous chapter a histogram shows a summary of the per-
centages of reduction of the number of quads. In the following figure we show a
particular case where the number of misalignments in the Homer hand’s portion
of the polycube decreases in a consistent way.

Figure 7.1: The Homer’s hand in the original model (left), in the initial polycube (center)
and in the optimized polycube (right).

47

Remember that the algorithm creates and solves the mathematical model sev-
eral times for each input polycube. Most of the time employed by the algorithm to
perform the complete optimization is used by the solver to compute the solution
of the mathematical model. Working with polycubes means to work with a very
small set of vertices, edges and faces and, for this reason, the steps of the algorithm
(apart from the optimization steps) are computationally inexpensive. The overall
time of the optimization with our algorithm ranges from a fraction of a second to a
few seconds. An exception is the Homer’s model that requires about 14 seconds to
be optimized. We can note, by analysing the tables in the previous chapter, that the
longest step is the “final optimization step”. In the previous chapter a histogram
shows a summary of the execution times for the di�erent models.

Analysing the test results, the mathematical model we have built is elegant,
robust and e�cient to reach our goal and it can be solved in an easy way thanks
to its linear constraints. We are satisfied with the achieved results. The purpose
of this work has been reached with good results and good execution times (with
some limitations that we will explain in the next chapter). Obviously the work is
not finished. It can be continued in several ways with di�erent application fields.
In the next chapter we will describe some of these and we will show some problems
of the algorithm and some possible solutions.

48

8
Future Works

Our method generates coarse quad-layouts of good quality for a wide set
of di�erent shapes. We observed that, in a few cases, a higher level of

coarseness could be reached.

Figure 8.1: Example of a misalignment omitted by the algorithm

If we observe the left image of the Figure 8.1 we can see that the red vertex
is not aligned with any other vertex along the y-coordinate. This misalignment
creates a set of redundant quads (highlighted by the green box of the right image)
that could be deleted if the red vertex was able to perform an alignment along the
y-coordinate. In Figure 8.2 a set of possible alignments for the red vertex is shown.
The problem is that in the Voronoi diagram of the vertices of the polycubes the
cell of the red vertex is not adjacent with any of the cells of the green vertices.
For this reason, in the mathematical model, there are no constraints or portion of
the objective function that forces the alignment of the red vertex with one of the
green vertices along the y-coordinate. The next step could be to find a modified

49

version of the Voronoi diagram that allows the algorithm to reach as many pairs
of alignments as possible.

Figure 8.2: Example of possible alignments for the red vertex

Once solved the previous problem, we would like to test our algorithm (with the
appropriate changes) in the hex-meshing field. As it is explained in [6], finding a
coarse “hex-layout” (the equivalent of the quad-layout in the hex-meshes) is a new
hot research topic. We have explained in Section 2.2 that one of the applications of
polycubes is the generation of hex-meshes. For this reason we would like to test if
generating a hex-mesh by using an optimized polycube makes a hex-layout better
than those generated through the original polycube.

Figure 8.3: Example of hex-mesh with the hex-layout taken from [6]

50

A
Gurobi Optimizer

Gurobi OPTIMIZER 6.0 is a state of the art solver for mathematical program-
ming. The solver in the Gurobi Optimizer includes a set of di�erent solvers

for linear programming, quadratic programming, mixed-integer linear program-
ming, quadratically constrained programming and many others. Gurobi supports
interfaces for a variety of programming and modeling languages like C, C++, Java,
MATLAB and others. We integrated this library (with a free license for students)
in our C++ interactive tool. Through the Gurobi’s instruction set we can easily
make the objective function and the constraints of the model and, with a single
instruction, we can optimize it. In this section we want to show some examples of
code used to create the model and to solve it.

First of all we must create an environment where we are able to create and solve
the model. To do this we declare a variable of type GRBEnv that representss the
environment and a variable of type GRBModel that represents the model. Note that
the model, during its creation, takes a reference to the environment in which it
must be solved.

GRBEnv env = GRBEnv() ;
GRBModel model = GRBModel(env) ;

Listing A.1: Creation of the environment and creation of the model.

Next we must create the variables of the problem. We have three variables for
each vertex (one for each coordinate) and three variables for each dummy vertex
of the polycube (see Section 4.2.5). We must declare variables of type GRBVar and
add them to the problem using the addVar() function. This function takes, for
each variable, five parameters: min_v and max_v represent respectively the lower

51

value and the highest value that the variable can assume in the solution (set with
the bounding box values), obj_v (optional) represents the initial value that the
variable must assume in the objective function, type is the variable type that we
set to GRB.INTEGER, and finally the name parameter is a string that denotes a sym-
bolic name for the variable.

GRBVar v ;
v = model . addVar (min_v , max_v , obj_v , type , name) ;

Listing A.2: Addition of a variable in the model.

We are ready to create the model. The first step is to create the objective func-
tion. To do this we have to create a variable of type GRBQuadExpr that represents
a quadratic expression (we have a mathematical problem with a quadratic objec-
tive function and linear constraints). Note that the objective function is expressed
in a simple and natural way. After creating the function we must add it to our
model through the setObjective() function and update the model through the
update() function.

GRBQuadExpr ob j ;
ob j = ((v1+v2) * (v1+v2) +(v3−v4) . . .) ;
model . s e tOb j e c t i v e (ob j) ;
model . update () ;

Listing A.3: Example of creation of the objective function.

Adding the constraints is as simple as the creation of the objective function.
Through the addConstr() function we can add constraints of “equality” or of
“lower-than” in an easy way. After the insertion of the constraints we have to up-
date the model with the update() function.

model . addConstr (v1−v2 <= 1) ;
model . addConstr (v1 * v3 == 0) ;
model . addConstr (v4 == v5) ;
. . .
model . update () ;

Listing A.4: Examples of constraints addition.

The next and final step is the optimization. Doing this through the Gurobi
solver is very easy. We just have to call the optimize() function and the solver

52

returns, in the variables of the problem previously added to the model, the solution
of the optimization.

model . op t imize () ;

Listing A.5: Optimization step.

The Gurobi solver has a system of exceptions to handle the problems during the
optimization. It is important to create the environment, create the model with its
objective function and its constraints, and to optimize it using a try-catch construct
as the next listing shows:

t r y
{

/ / c r e a t i on of the environment
/ / c r e a t i on of the model
/ / c r e a t i on of the o b j e c t i v e f unc t i on
/ / c r e a t i on of the c o n s t r a i n t s
/ / op t im i za t i on

}

ca tch (GRBException e)
{

s td : : cout << " Error " << e . getErrorCode () ;
}

ca tch (. . .)
{

s td : : cout << " Except ion dur ing the op t im i za t i on " ;
}

Listing A.6: Structure of the code.

53

54

Bibliography

[1] David Bommes, Timm Lempfer, and Leif Kobbelt. Global structure optimiza-
tion of quadrilateral meshes. In Computer Graphics Forum, volume 30, pages
375–384. Wiley Online Library, 2011.

[2] David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva,
Marco Tarini, and Denis Zorin. Quad-mesh generation and processing: A
survey. In Computer Graphics Forum, volume 32, pages 51–76. Wiley Online
Library, 2013.

[3] Marcel Campen, David Bommes, and Leif Kobbelt. Dual loops meshing: qual-
ity quad layouts on manifolds. ACM Transactions on Graphics (TOG), 31(4):110,
2012.

[4] Marcel Campen and Leif Kobbelt. Dual strip weaving: interactive design
of quad layouts using elastica strips. ACM Transactions on Graphics (TOG),
33(6):183, 2014.

[5] Alecu Felician. Blender institute–the institute for open 3d projects. Open Source
Science Journal, 2(1):36–45, 2010.

[6] Xifeng Gao, Zhigang Deng, and Guoning Chen. Hex-mesh re-
parameterization from aligned base domains supplemental material. SIG-
GRAPH, 2015.

[7] James Gregson, Alla She�er, and Eugene Zhang. All-hex mesh generation
via volumetric polycube deformation. In Computer graphics forum, volume 30,
pages 1407–1416. Wiley Online Library, 2011.

55

[8] Ying He, Hongyu Wang, Chi-Wing Fu, and Hong Qin. A divide-and-conquer
approach for automatic polycube map construction. Computers & Graphics,
33(3):369–380, 2009.

[9] Juncong Lin, Xiaogang Jin, Zhengwen Fan, and Charlie CL Wang. Automatic
polycube-maps. In Advances in Geometric Modeling and Processing, pages 3–16.
Springer, 2008.

[10] Marco Livesu, Nicholas Vining, Alla She�er, James Gregson, and Riccardo
Scateni. Polycut: monotone graph-cuts for polycube base-complex construc-
tion. ACM Transactions on Graphics (TOG), 32(6):171, 2013.

[11] Gurobi Optimization et al. Gurobi optimizer reference manual. URL:
http://www. gurobi. com, 2012.

[12] Chris Rycroft. Voro++: A three-dimensional voronoi cell library in c++.
Lawrence Berkeley National Laboratory, 2009.

[13] Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio Montani. Polycube-
maps. ACM Transactions on Graphics (TOG), 23(3):853–860, 2004.

[14] Marco Tarini, Enrico Puppo, Daniele Panozzo, Nico Pietroni, and Paolo
Cignoni. Simple quad domains for field aligned mesh parametrization. ACM
Transactions on Graphics (TOG), 30(6):142, 2011.

[15] Francesco Usai, Marco Livesu, Enrico Puppo, Marco Tarini, and Riccardo
Scateni. Coarse quad layouts from curve-skeletons. ACM Transactions on Graph-
ics (TOG), in press.

56

List of Figures

1.1 Examples of 3D models. 1
1.2 Examples of quad-layouts obtained with di�erent algorithms taken from

[14], [2] and [15]. 2
1.3 Example of the polycube optimization: the Dragon’s face in the original

model (left), in the initial polycube (center) and in the optimized polycube
(right). 2

2.1 An example of quad-mesh that represents the 3D model of the Stanford
Bunny. 5

2.2 An example of a quad-mesh with singularities and chart boundaries (left)
and the same model with charts identi�ed by di�erent colors (right) taken
from [14]. 6

2.3 The quad-mesh classi�cation: Regular, Semi-regular, Valence semi-regular
and Unstructured meshes taken from [2]. 7

2.4 A quad-mesh for the computer animation, taken from [2], of the “Big Buck
Bunny” movie, Blender Institute 2007 [5] 8

2.5 Examples of quad-layouts taken from [15]. 9
2.6 Two examples of polycubes of the same model obtained with di�erent algo-

rithms, the �rst taken from [13] and the second taken from [10]. 9
2.7 Example of texture-mapping described previously, taken from [13]. 10
2.8 Example of hex-meshing, taken from [7]. 10
2.9 Examples of polycubes obtained with di�erent algorithms, taken from [10]. 11
2.10 The four steps of the PolyCut algorithm, taken from [10]. 12

3.1 An example in the 2D space of the initial model (left) and its optimization
(right). 13

57

3.2 An example in the 3D space of the initial model (left) and its optimization
(right). 14

4.1 The Squirrel model polycube (left) and its 3D Voronoi diagram (right). . . 17
4.2 An example of adjacency to reject. 18
4.3 3 convex dihedral angles. 18
4.4 3 concave dihedral angles. 19
4.5 2 convex dihedral angles and 1 concave dihedral angle. 19
4.6 2 concave dihedral angles and 1 convex dihedral angle. 19
4.7 An example of possible multiple alignments. 20
4.8 The previous example after the alignment. 20
4.9 In the �rst image we have two vertices that want to reach an alignment,

in the second image we have the alignment without constraints and in the
third image we have the correct alignment conditioned by constraints. . . . 21

4.10 An example of plane inserted between two vertices to avoid their collapse. . 23
4.11 An example of possible shape collapse. 24
4.12 Examples of dummies’ problem. 25

5.1 The Bunny model and its polycube representation obtained by [10]. 30
5.2 The Bunny polycube in our interactive tool, after the essential information

is extracted. 30
5.3 The Bunny polycube in our interactive tool, after the dummy edges and

vertices computation. 31
5.4 The Bunny polycube in our interactive tool, after the Voronoi diagram

computation. 32
5.5 The Bunny polycube in our interactive tool, after the Voronoi adjacencies

computation. 32
5.6 The Bunny polycube in our interactive tool, after the �rst step of optimization. 33
5.7 The Bunny polycube in our interactive tool, after the �nal optimization step. 34
5.8 The Bunny polycube in our interactive tool, after the quad-mesh computation. 34
5.9 Screenshot of the UI of our interactive tool. 35
5.10 Commands to run the algorithm step by step. 36
5.11 Commands to run the optimization steps of the algorithm. 36
5.12 Commands to compute the quad-mesh of the optimized polycube. 37

6.1 The Squirrel model and its polycube (left), the initial quad-layout (center)
and the optimized quad-layout (right). 40

6.2 The Armadillo model and its polycube (left), the initial quad-layout (center)
and the optimized quad-layout (right). 40

58

6.3 The Bunny model and its polycube (left), the initial quad-layout (center)
and the optimized quad-layout (right). 41

6.4 The Bone model and its polycube (left), the initial quad-layout (center) and
the optimized quad-layout (right). 41

6.5 The Homer model and its polycube (left), the initial quad-layout (center)
and the optimized quad-layout (right). 42

6.6 The Bimba model and its polycube (left), the initial quad-layout (center)
and the optimized quad-layout (right). 42

6.7 The Dragon model and its polycube (left), the initial quad-layout (center)
and the optimized quad-layout (right). 43

6.8 The Shape model and its polycube (left), the initial quad-layout (center)
and the optimized quad-layout (right). 43

6.9 The Dragon’s face in the original model (left), in the initial polycube (cen-
ter) and in the optimized polycube (right). 44

6.10 The Armadillo’s back in the original model (left), in the initial polycube
(center) and in the optimized polycube (right). 44

6.11 The Bunny’s tail in the original model (left), in the initial polycube (center)
and in the optimized polycube (right). 44

7.1 The Homer’s hand in the original model (left), in the initial polycube (cen-
ter) and in the optimized polycube (right). 47

8.1 Example of a misalignment omitted by the algorithm 49
8.2 Example of possible alignments for the red vertex 50
8.3 Example of hex-mesh with the hex-layout taken from [6] 50

59

60

List of Tables

4.1 Look-Up Table of case 1. 18
4.2 Look-Up Table of case 2. 19
4.3 Look-Up Table of case 3. 19
4.4 Look-Up Table of case 4. 19

6.1 Results of the optimization of the Squirrel polycube. 40
6.2 Results of the optimization of the Armadillo polycube. 40
6.3 Results of the optimization of the Bunny polycube. 41
6.4 Results of the optimization of the Bone polycube. 41
6.5 Results of the optimization of the Homer polycube. 42
6.6 Results of the optimization of the Bimba polycube. 42
6.7 Results of the optimization of the Dragon polycube. 43
6.8 Results of the optimization of the Shape polycube. 43

61

62

Listings

A.1 Creation of the environment and creation of the model. 51
A.2 Addition of a variable in the model. 52
A.3 Example of creation of the objective function. 52
A.4 Examples of constraints addition. 52
A.5 Optimization step. 53
A.6 Structure of the code. 53

63

64

Ringraziamenti

Beh finalmente posso scrivere in italiano! È
giunta l’ora di fare i ringraziamenti (questo
vuol dire che finalmente siamo arrivati alla
fine di questa “avventura”). Già non ho
voglia di scriverli, l’unica nota positiva è
che posso non farli in inglese, quindi li
scriverò nella mia linguaccia solita ben nota
a tutti coloro che ora stanno leggendo
questa pagina (avendo saltato tutto il resto
della tesi perché non ve ne fotte nulla.
Bastardi!!!). Non farò nomi perché non
ho gana di scimprarmi a capire se ne
ho dimenticato qualcuno, che poi vi infra-
scate...

Andiamo per ordine. Il primo da ringraziare è
il Boss che, nonostante le sue prese per il culo, i
suoi insulti o i suoi soprannomi come “Giammi
la merda umana” o “Giammi una buona parola
per tutti”, mi ha sempre dato fiducia e soprat-
tutto permesso di far parte del fantastico grup-
po/famiglia della BatCaverna.

Tu mi tratti sempre male e soprattutto, cosa non banale e piuttosto fastidiosa, cer-
chi sempre di appoggiarmela. Nonostante tutto ti devo ringraziare lo stesso perché

65

senza di te non ce l’avrei fatta. Da Vancouver, Genova, Cagliari o da Casino dove
ti trovavi hai sempre avuto tempo e voglia (forse) di darmi un consiglio o aiutarmi
a ragionare... Quasi quasi, a mo’ di ringraziamento e solo di ringraziamento, te la
appoggerò pure io prima o poi.

Mica mi dimentico di tutti voi Cavernicoli. Grazie a tutti voi che nel corso degli
anni siete entrati o usciti da questo posto lindo e accogliente che è ormai la nostra
casa. Mi state/siete stati QUASI tutti simpatici e questa è una cosa abbastanza
rara per me. Ringrazio chi è stato una fonte di ispirazione, chi mi ha aiutato nei
momenti di�cili (universitari e non) e chi ha condiviso con me scleri e incazzi
supportandomi e sopportandomi. Ringrazio chi mi ha aiutato in questi anni con
una spiegazione, una libreria, un ragionamento alla lavagna, un proofreading o
anche un semplice consiglio. Infine, siccome non posso fare nomi, a voi darò tre
pseudonimi; ci terrei in modo particolare a ringraziare voi tre che avete condiviso
con me quasi tutti i giorni degli ultimi cinque anni e con cui forse (spero) avrò
modo di condividere ancora tanto: grazie Merda, Bolla e Ansia!!!

Amici!!! Non mi dimentico sicuramente di voi! Grazie per l’AMICIZIA dimostrata
in questi anni (o da sempre nel caso di qualcuno). La vita universitaria stressa
molto, ma meeeeda, e quelli che possono sembrare piccoli gesti a volte sono in
realtà molto importanti. Per fortuna non posso fare nomi, tanto qualcuno l’avrei
dimenticato per forza, invece così se volete sentirvi ringraziati “siate ringraziati”.
Ci tengo a ringraziare chi mi ha ospitato una (molte più di una) volta a dormire
per evitarmi un viaggio, chi mi ha minacciato più e più volte di picchiarmi molto
(ahahahahahah aspettando...), chi mi ha fatto questo bellissimo disegno, chi mi ha
consentito di svagare con un film al cinema, con una chiacchierata, con una birra,
con una carrellata di cattiverie, con una gita o in generale facendomi sentire la sua
presenza (tanto lo so che siete scemi → dicasi “Presenza” il fatto di essere presente in
un determinato luogo, o di intervenire, di assistere a qualche cosa [cit. Treccani]). Grazie
ancora a chi ha condiviso con me una birretta, una cena in mensa, un ca�è a casa,
uno yogurt, un concerto, una serata al biliardo, qualche birra, una giornata al mare
e qualsiasi altra cosa. Oh mo basta, senza strollicarsi troppo, grazie e bo...

Non mi sono dimenticato di voi. Grazie alla mia Famiglia per aver sempre sempre
sempre creduto in me in maniera incondizionata (anche quando io ormai avevo
smesso). La cosa più importante nei momenti di di�coltà è sapere che, comunque
andranno le cose, qualcuno che crede in te ci sarà sempre... Quindi GRAZIE.

Grazie a ME per esserci riuscito!!!

66

	Introduction
	State of the art
	Quad-Meshes and Quad-Layouts
	PolyCubes

	Motivation
	The Mathematical Model
	The Objective function
	Shape preservation
	Alignment

	Constraints
	Collinearity of the end-points
	Minimum length of the edges
	Vertices already aligned
	Avoiding the collapse of the vertices
	Dummy vertices and edges
	Integer coordinates

	The final model

	Algorithms and Implementation
	The final algorithm
	The interactive tool

	Results
	Conclusions
	Future Works
	Gurobi Optimizer
	References
	List of Figures
	List of Tables
	List of Listings

