
G. Cherchi 1, M. Livesu 2, R. Scateni 1, M. Attene 2

1 University of Cagliari, Italy

2 IMATI-CNR, Italy

Mesh arrangements

Starting from a generic set of triangles with no assumptions
(with self-intersections, degenerate, etc.) we want a subdivision

of the space into topologically sound cells bounded by the
input triangles.

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

𝐴 ∪ 𝐵

𝐴

𝐵 𝐴 ∖ 𝐵

𝐵 ∖ 𝐴
𝐴 ∩ 𝐵

The main problem

Representing intersection points: 2 families of algorithms.

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

exact coordinates
(i.e. rational numbers)

floating-point
coordinates

intersection points

correct but slow inaccurate but fast

The solution: lazy evaluation

State of the Art

correct sign

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

No thread safe

What we want?

• pure floating-point computation
(3-8x faster than interval arithmetic)

• interval arithmetic as a second choice

• no rational numbers (we use floating-
point hardware expansions)

no
ambiguity

ambiguousinterval
arithmetic

rational
numbers

Contribution

Point representation

1
{𝑥, 𝑦, 𝑧}

explicit point

2

v₀

v₃

v₄

v₅

v₂

v₁

v₀

v₁
v₂

v₃

v₄

v₅
v₆v₇

={L(v₀,v₁),P (v₃,v₄,v₅)} ={P (v₀,v₁,v₂),P (v₃,v₄,v₅),P (v₄,v₆,v₇)}

line-plane intersection
(implicit)

v₀

v₃

v₄

v₅

v₂

v₁

v₀

v₁
v₂

v₃

v₄

v₅
v₆v₇

={L(v₀,v₁),P (v₃,v₄,v₅)} ={P (v₀,v₁,v₂),P (v₃,v₄,v₅),P (v₄,v₆,v₇)}

3 three planes intersection
(implicit)

{𝐿 𝑉-, 𝑉. , 𝑃(𝑉1, 𝑉2, 𝑉3)}
5 explicit points required

{𝑃 𝑉-, 𝑉., 𝑉5 , 𝑃 𝑉1, 𝑉2, 𝑉3 , 𝑃 𝑉6, 𝑉7, 𝑉8 }
9 explicit points required

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Point orientation
M

es
h

Ar
ra

ng
em

en
ts

2D problem:
• robustly compute triangle normal orientation
• orthogonal projection of the elements
• generalized 2D orientation (indirect predicates, based on [Attene 2020])

• works with a mix of explicit and implicit points

triangle subdivision

conformality enforcement

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

orient2D
(computation of the relative position,

on a plane, of a point and a line)

Point sorting

𝑉9

𝑉:

implicit points
in e(V=, V>)

𝑉9

𝑉:

2D problem:
• generalized point comparator
• indirect predicates working with a mix of explicit and implicit points

pointCompare(a,b)
(determines if a is smaller, equal to or

larger than b)

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Mesh Arrangements

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

???

How can we compute
the Mesh Arrangements
without the coordinates
of intersection points?

Intersection localization

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

line segment
intersection

single point
intersection polygon

(coplanar tris)

3 possible intersections:

Splitting triangles

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

• single triangle split in sub-triangles

• exact point-in-triangle test (orient2D)

Each triangle is processed separately

Splitting edges

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Each original edge is split
independently on each triangle

• points on edge sorted (pointCompare)

• adjacent triangles split in sub-triangles

Adding intersection segments

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Intersection segments are
defined by two intersecting
triangles

• we select the triangles
intersecting the segment

Adding intersection segments

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

• we remove the selected
triangles creating two voids in
the mesh

Intersection segments are
defined by two intersecting
triangles

Adding intersection segments

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

• we triangulate the pockets
including the segment as an edge
in the mesh

• the segment is marked as
constraint edge

constraint
edgesIntersection segments are

defined by two intersecting
triangles

Adding intersection segments

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

If a constraint segment intersect
a previously inserted
intersecting segment...

• each constraint edge is
defined by two intersecting
triangles

• a new implicit point of type 3

implicit point
(three planes
intersection)

Coplanar triangles

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Each triangle is processed
separately

Coplanar triangles

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Each triangle is processed
separately

• we keep track of coplanar pockets

Coplanar triangles

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Each triangle is processed
separately

• we tessellate each pocket separately

Coplanar triangles

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Each triangle is processed
separately

• we use only one tessellation for
triangles sharing the same pocket

Results

Results

Tests on:

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Thingi10K dataset
[Zhou and Jacobson 2016]

• 1000 models

• 4407(+1) models with self intersections

128 GB RAM

12 cores

ImatiSTL [Attene 2017] + CinoLib [Livesu 2019]
vs

libigl [Panozzo and Jacobson 2014] + CGAL
(lazy evaluation)

Comparisons

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

serial
implementation

parallel
implementation

5.7h

2.5h

4.6h

<1h

libigl
our

Serial version:
we run faster in 99% of the models

Parallel version:
we run faster in 94% of the models

Our serial implementation is faster than
parallel libigl in 63% of the models

Serial libigl is faster than our serial in 31 small
models and in 1 model with 1.7M of
intersections of type 3.
We are faster in parallel-vs-parallel version

Challenging models

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

ours serial: <4h (22GB)
ours parallel: <1h (23GB)

libigl: out of memory
after 7h (>100GB)

10 most challenging models

time ratio: 9% - 63% (avg 18%)

mem ratio: 23% - 77% (avg 39%)

76K vertices
170K triangles
>35M intersections

Applications

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Tetrahedralization

Sweeping,
Minkowski Sums

Booleans

Conclusions

Code is available!

A novel algorithm for robust and efficient mesh arrangements computation

github.com/gcherchi/FastAndRobustMeshArrangements

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

scan me!

Future works

• Conversion from implicit to explicit point: Snap rounding problem

• Extension of the input to segments, points and generic polygons

• In-Circle indirect predicate -> constrained Delaunay triangulation

• Re-engineering of code and parallel version improvement

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

