Fast and Robust Mesh Arrangements
using Floating-point Arithmetic

G. Cherchi 7, M. Livesu 2, R. Scateni !, M. Attene 2

1 University of Cagliari, Italy

2 IMATI-CNR, ltaly

Mesh arrangements

Starting from a generic set of triangles with no assumptions
(with self-intersections, degenerate, etc.) we want a subdivision
of the space into topologically sound cells bounded by the
input triangles.

B AUB A\B

A B\ A

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

The main problem

Representing intersection points: 2 families of algorithms.

[intersection points]

/\

exact coordinates floating-point
(i.e. rational numbers) coordinates

[correct|but slow } [inaccurate but|fast }
\

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

State of the Art

The solution: lazy evaluation

‘ What we want?
interval

‘ ‘ ambiguous
aritimetic « pure floating-point computation
(3-8x faster than interval arithmetic)
no :
ambiguity rational interval arithmetic as a second choice
numbers
‘o * no rafional numbers (we use floating-
No ’(‘ﬂfead sd point hardware expansions)

correct sign

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Contribution

Point representation

o three planes intersection
explicit point implicit

@ {xy2z

ine-plane intersection v
. .o 1
(implicit) Va V2

Vs

O {L(VOJ Vl): P(V?n V4' VS)}

5 explicit points required

{P(VOI Vl; VZ): P(V?n V4-; VS)f P(V6' V7; VS)} ‘
Vs 9 explicit points required

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Point orientation

) | T
£ [Tmangle subdivision]
% 5 orient 2D
® 5 (computation of the relative position,
= % on a plane, of a point and a line)
< [Conformalﬁy enforcemem]
—
2D problem:

* robustly compute triangle normal orientation
« orthogonal projection of the elements

« generalized 2D orientation (indirect predicates, based on [Attene 2020])
« works with a mix of explicit and implicit points

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

S~

Point sorting

Vs poi nt Conpar e(a, b)
(determines if a is smaller, equal to or
larger than b)

implicit points
n e(Va, Vb)

S~

2D problem:
* generalized point comparator
« indirect predicates working with a mix of explicit and implicit points

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Mesh Arrangements

How can we compute
the Mesh Arrangements
without the coordinates
of intersection points?

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Intersection localization

o
o
@]
o
o
® o
© o
o
o
3 possible infersections: o°
0

s‘ngm line segment
Intersection po|ygon

Intersection _
(coplanar tris)

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Splitting triangles

Fach triangle is processed separately

 single triangle split in sub-triangles

« exact point-in-riangle test (ori ent 2D

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Splitting edges

Each original edge is split
independently on each triangle

« points on edge sorted (poi nt Conpar e)

 adjacent friangles split in sub-triangles

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Adding intersection segments

Infersection segments are
defined by two infersecting
friangles

« we select the triangles
intersecting the segment

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Adding intersection segments

Infersection segments are
defined by two infersecting
friangles

e we remove the selected
friangles creating two voids in
the mesh

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Adding intersection segments

constraint
Infersection segments are I edges I
defined by two infersecting

friangles

« we friangulate the pockets
including the segment as an edge
in the mesh

« the segment is marked as
constraint edge

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Adding intersection segments

f a constraint segment intersect
a previously inserted
intersecting segment. .

(imphcﬁ point
(three planes
* each constfraint edge Is | intersection

defined by two infersecting
friangles

« anew implicit point of type 3

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Coplanar triangles

Fach triangle is processed
separately

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Coplanar triangles

Fach triangle is processed
separately

« we keep track of coplanar pockets

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Coplanar triangles

Fach triangle is processed
separately

« we fessellate each pocket separately

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Coplanar triangles

Fach triangle is processed
separately

« we use only one fessellation for
friangles sharing the same pocket

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Results

Tests on:

, 128 GB RAM

s 12 cores

Results

Thingi10K dataset

[Zhou and Jacobson 2016]
1000 models

* 4407(+1) models with self intersections

ImatiSTL [Attene 2017/] + CinoLib [Livesu 2019]
&
libigl [Panozzo and Jacobson 2074] + CGAL

(lazy evaluation)

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Comparisons

‘ W b
5 7h I:I our
4.6h
2.5h
<1h
serial parallel
implementation implementation

Serial version:
we run faster in 99% of the models

Parallel version:
we run faster in 94% of the models

Our serial implementation is faster than
oarallel libigl in 63% of the models

Serial libigl is faster than our serial in 31 small
models and in T model with 1.7M of
infersections of type 3.

We are faster in parallelvs-parallel version

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Challenging models

/76K vertices
170K triangles
>35M intersections

ours serial: <4h (22GB)
ours parallel: <1h (23GB)

libigl: out of memory
after 7h (~100GB)

)
10 most challenging models
fime ratio: 9% - 63% (avg 18%)
mem ratio: 23% - 77% (avg 39%)
—

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Applications

Sweeping,
Minkowski Sums

Booleans

Tetrahedralization

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Conclusions

Code is available!

A novel algorithm for robust and efficient mesh arrangements computation

scan me!

gi t hub. com gcher chi / Fast AndRobust MeshArr angenent s

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

Future works

« Conversion from implicit to explicit point: Snap rounding problem
« Extension of the input to segments, points and generic polygons
* In-Circle indirect predicate -> constrained Delaunay triangulation

* Re-engineering of code and parallel version improvement

Fast and Robust Mesh Arrangements using Floating-point Arithmetic

