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Mesh arrangements

Starting from a generic set of triangles with no assumptions 
(with self-intersections, degenerate, etc.) we want a subdivision 

of the space into topologically sound cells bounded by the 
input triangles.
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The main problem

Representing intersection points: 2 families of algorithms.
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exact coordinates
(i.e. rational numbers)

floating-point 
coordinates

intersection points

correct but slow inaccurate but fast



The solution: lazy evaluation

State of the Art

correct sign
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No thread safe

What we want?

• pure floating-point computation        
(3-8x faster than interval arithmetic)

• interval arithmetic as a second choice

• no rational numbers (we use floating-
point hardware expansions)

no 
ambiguity

ambiguousinterval 
arithmetic

rational 
numbers



Contribution



Point representation
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line-plane intersection
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={L(v₀,v₁),P (v₃,v₄,v₅)} ={P (v₀,v₁,v₂),P (v₃,v₄,v₅),P (v₄,v₆,v₇)}

3 three planes intersection
(implicit)

{𝐿 𝑉-, 𝑉. , 𝑃(𝑉1, 𝑉2, 𝑉3)}
5 explicit points required

{𝑃 𝑉-, 𝑉., 𝑉5 , 𝑃 𝑉1, 𝑉2, 𝑉3 , 𝑃 𝑉6, 𝑉7, 𝑉8 }
9 explicit points required
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Point orientation
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2D problem:
• robustly compute triangle normal orientation
• orthogonal projection of the elements
• generalized 2D orientation (indirect predicates, based on [Attene 2020])

• works with a mix of explicit and implicit points

triangle subdivision

conformality enforcement 
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orient2D
(computation of the relative position, 

on a plane, of a point and a line)



Point sorting

𝑉9

𝑉:

implicit points
in e(V=, V>)

𝑉9

𝑉:

2D problem:
• generalized point comparator 
• indirect predicates working with a mix of explicit and implicit points

pointCompare(a,b)
(determines if a is smaller, equal to or 

larger than b)
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Mesh Arrangements 
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???

How can we compute 
the Mesh Arrangements 
without the coordinates
of intersection points?



Intersection localization
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line segment
intersection

single point
intersection polygon

(coplanar tris)

3 possible intersections:



Splitting triangles
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• single triangle split in sub-triangles

• exact point-in-triangle test (orient2D)

Each triangle is processed separately



Splitting edges
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Each original edge is split 
independently on each triangle

• points on edge sorted (pointCompare)

• adjacent triangles split in sub-triangles



Adding intersection segments
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Intersection segments are 
defined by two intersecting 
triangles

• we select the triangles 
intersecting the segment



Adding intersection segments
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• we remove the selected 
triangles creating two voids in 
the mesh

Intersection segments are 
defined by two intersecting 
triangles



Adding intersection segments
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• we triangulate the pockets 
including the segment as an edge 
in the mesh

• the segment is marked as 
constraint edge

constraint
edgesIntersection segments are 

defined by two intersecting 
triangles



Adding intersection segments
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If a constraint segment intersect 
a previously inserted 
intersecting segment...

• each constraint edge is 
defined by two intersecting 
triangles

• a new implicit point of type 3

implicit point
(three planes 
intersection)



Coplanar triangles
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Each triangle is processed 
separately



Coplanar triangles
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Each triangle is processed 
separately

• we keep track of coplanar pockets



Coplanar triangles
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Each triangle is processed 
separately

• we tessellate each pocket separately



Coplanar triangles
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Each triangle is processed 
separately

• we use only one tessellation for 
triangles sharing the same pocket



Results



Results

Tests on:
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Thingi10K dataset
[Zhou and Jacobson 2016]

• 1000 models

• 4407(+1) models with self intersections 

128 GB RAM

12 cores

ImatiSTL [Attene 2017] + CinoLib [Livesu 2019]
vs

libigl [Panozzo and Jacobson 2014] + CGAL
(lazy evaluation)



Comparisons
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serial
implementation

parallel
implementation

5.7h

2.5h

4.6h

<1h

libigl
our

Serial version:
we run faster in 99% of the models

Parallel version:
we run faster in 94% of the models

Our serial implementation is faster than 
parallel libigl in 63% of the models

Serial libigl is faster than our serial in 31 small 
models and in 1 model with 1.7M of 
intersections of type 3.
We are faster in parallel-vs-parallel version



Challenging models
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ours serial: <4h (22GB)
ours parallel: <1h (23GB)

libigl: out of memory 
after 7h (>100GB)

10 most challenging models

time ratio:  9% - 63%    (avg 18%)

mem ratio: 23% - 77%  (avg 39%)

76K vertices
170K triangles
>35M intersections



Applications
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Tetrahedralization

Sweeping, 
Minkowski Sums 

Booleans



Conclusions



Code is available!

A novel algorithm for robust and efficient mesh arrangements computation

github.com/gcherchi/FastAndRobustMeshArrangements
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scan me!



Future works

• Conversion from implicit to explicit point: Snap rounding problem

• Extension of the input to segments, points and generic polygons

• In-Circle indirect predicate -> constrained Delaunay triangulation

• Re-engineering of code and parallel version improvement
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