
Fast and Robust Mesh Arrangements using Floating-point Arithmetic

GIANMARCO CHERCHI, University of Cagliari, Italy
MARCO LIVESU, IMATI - CNR, Italy
RICCARDO SCATENI, University of Cagliari, Italy
MARCO ATTENE, IMATI - CNR, Italy

Ours
<4h, 22GB, serial
<1h, 23GB, parallel

libigl
out of memory a�er

7h (>100GB)

t

5.7h

2.5h

<1h

4.6h

serial parallel

libigl
ours

vertices
triangles
intersections

 76K
 170K
~40M

Fig. 1. We propose a novel method to robustly resolve mesh intersections (left). We can process the 4K meshes in Thingi10K [Zhou and Jacobson 2016] with at
least one intersection at a fraction of the time required by prior methods, while better exploiting modern multi-core hardware (middle). Our method scales
well on the most challenging model in the dataset, succeeding where previous methods fail due to excessive memory requirements (right). The model in the
picture is excluded from the aggregated statistic due to the failure of libigl.

We introduce a novel algorithm to transform any generic set of triangles in
3D space into a well-formed simplicial complex. Intersecting elements in the
input are correctly identified, subdivided, and connected to arrange a valid
configuration, leading to a topologically sound partition of the space into
piece-wise linear cells. Our approach does not require the exact coordinates
of intersection points to calculate the resulting complex. We represent any
intersection point as an unevaluated combination of input vertices. We then
extend the recently introduced concept of indirect predicates [Attene 2020] to
define all the necessary geometric tests that, by construction, are both exact
and efficient since they fully exploit the floating-point hardware. This design
makes our method robust and guaranteed correct, while being virtually as
fast as non-robust floating-point based implementations. Compared with
existing robust methods, our algorithm offers a number of advantages: it
is much faster, has a better memory layout, scales well on extremely chal-
lenging models, and allows fully exploiting modern multi-core hardware

Authors’ addresses: Gianmarco Cherchi, University of Cagliari, Italy, g.cherchi@unica.
it; Marco Livesu, IMATI - CNR, Italy, marco.livesu@ge.imati.cnr.it; Riccardo Scateni,
University of Cagliari, Italy, riccardo@unica.it; Marco Attene, IMATI - CNR, Italy,
marco.attene@ge.imati.cnr.it.

with a parallel implementation. We thoroughly tested our method on thou-
sands of meshes, concluding that it consistently outperforms prior art. We
also demonstrate its usefulness in various applications, such as computing
efficient mesh booleans, Minkowski sums, and volume meshes.

CCS Concepts: • Computing methodologies → Mesh geometry mod-
els; Mesh models.

Additional KeyWords and Phrases: intersections, geometric predicates, mesh
booleans, constrained triangulation

ACM Reference Format:
Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco Attene.
2020. Fast and Robust Mesh Arrangements using Floating-point Arithmetic.

1 INTRODUCTION
Modern Geometry Processing is increasingly calling for efficient
and reliable tools for the realization of basic geometric operations.
When compared with Computer Vision, where researchers and
practitioners can count on a rich set of mature tools to process pixel
matrices, Geometry Processing is still missing robust and efficient
solutions, even for fundamental operations on triangle meshes.

In this paper we focus on a long-lasting problem in mesh process-
ing: the robust handling of triangle intersections. Splitting mesh ele-
ments at their intersection points is at the basis of numerous higher
level algorithms, such as the calculation of mesh booleans [Zhou

https://doi.org/10.1145/3414685.3417818
https://doi.org/10.1145/3414685.3417818
https://doi.org/10.1145/3414685.3417818

• Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco Attene

et al. 2016], sweepings of a 3D object along a guiding curve or sur-
face [Hachenberger 2009], offsetting [Jung et al. 2003], and also the
meshing of volumes whose bounding surfaces have defects [Hu et al.
2018]. All these methods share a basic need: partition the space into
a set of topologically well formed cells, in order to unambiguously
separate the interior from the exterior.

This partition into cells, ormesh arrangement, has been the subject
of extensive research in previous years, and is notoriously regarded
as a difficult yet computationally intensive problem, which often
constitutes the biggest bottleneck for the aforementioned higher
level algorithms.

The most critical part in the computation of a mesh arrangement
is the representation of intersection points. To this end, we can clas-
sify the state of the art techniques in two broad classes: algorithms
representing intersections exactly (i.e., using rational numbers to
represent their coordinates) and algorithms that, on the contrary,
rely on the standard floating-point encoding. Typically, algorithms
in the former class give correctness and robustness guarantees at the
expense of a significant loss of performances. In contrast, those in
the latter category are efficient but may occasionally fail or produce
inaccurate results. Despite some attempts have been made to speed
up rationals (e.g. using lazy evaluation [The CGAL Project 2019]) ,
the performance gap with standard floats is still remarkable. Fur-
thermore, these attempts do not allow for parallel implementations
as the infrastructure needed to speed up the evaluation is not thread
safe.

We propose the first method for mesh arrangements that is able
to successfully combine the correctness guarantees secured by ra-
tional numbers with the efficiency typical of floating points. The
core idea behind our technique is never to use coordinates of in-
tersection points to make decisions during the algorithm. To do
this, we classify all the possible intersections and represent them
implicitly as suggested in [Attene 2020] (i.e., by storing references
to the input primitives that generated them): their actual coordi-
nates may be computed only during the last step of the pipeline,
when there are no longer intersections. To guarantee accuracy and
correctness, we define a comprehensive set of indirect predicates
[Attene 2020] that can operate on all the possible implicit points
in any configuration. Based on these basic tools, we introduce a
mesh arrangement algorithm where crucial steps have been care-
fully designed to avoid the need of intersection point coordinates.
The resulting mesh connectivity is provably the same as the one ob-
tained by using rationals, but without the associated slowdown. As a
bonus, our implicit intersection points and associated predicates are
thread safe, and allow for an efficient fully parallel implementation
of geometric algorithms.

We tested our implementation against themost challenging dataset
available in literature, which consists in the 4408 intersectingmeshes
in Thingi10K [Zhou and Jacobson 2016]. We compared our method
against the implementation provided by libigl [Panozzo and Jacob-
son 2014], which is based on fast rational numbers with lazy evalua-
tion [The CGAL Project 2019]. Results confirm that we consistently
outperform libigl, also greatly limiting the amount of hardware
resources for the most challenging models (Figure 1).

A serial implementation of our method proved to be even faster
than the parallelized version of libigl. A thorough analysis of our re-
sults is presented in Section 6, where we also demonstrate a number
of applications that exploit our tool.

2 RELATED WORKS
We organize our review of the state of the art by first reporting
about existing methods which are explicitly designed to resolve
intersections and calculate mesh arrangements, and then describing
techniques that depend on these low-level operations to produce
their own results. Furthermore, we observe that many algorithms
of this kind (including ours) need to cope with a non-trivial use
of floating point arithmetic. Hence, we also summarize the main
existing approaches to guarantee that algorithms are numerically
robust.

2.1 Mesh Arrangements
Resolving intersections and self-intersections in explicitly repre-
sented polygon meshes is notoriously difficult. In tessellated CAD
models, where manifold patches intersect at their borders and an
approximation is tolerated, intersections can be solved with a local-
ized approach [Bischoff and Kobbelt 2005]. For raw digitized models,
triangles can be assumed to be small and local re-triangulation can
be employed to replace self-intersections with valid configurations
[Attene 2010]. Alternatively, vertex-based geometry can be con-
verted to a plane-based representation [Bernstein and Fussell 2009]
to enable the use of robust geometric predicates. This conversion re-
quires a non trivial repairing but, under certain conditions, repairing
can be avoided [Campen and Kobbelt 2010a]. Unfortunately, to meet
these conditions the input may require a tricky clipping of edges
and triangles that can introduce an additional rounding and new
intersections. That is why more recent approaches rely on exact
arithmetic to achieve this goal [Hu et al. 2018; Zhou et al. 2016], but
the price to pay is a significant loss of performances. To the best
of our knowledge, [de Magalhães et al. 2020] is the only existing
algorithm that provides guarantees while being sufficiently fast
though, unfortunately, it requires its input models to be manifold
and closed to provide such guarantees while computing boolean
operations. The restrictions they put on the input domain dramat-
ically reduces the number of pathological cases to be managed in
the classification and triangulation steps, making the core of the
algorithm more straightforward. For this reason, they can compute
explicit coordinates during the triangulation step without losing
performance.

2.2 Applications
Intersection resolution is a fundamental building block for advanced
3D modeling operations such as mesh booleans, Minkowski sums,
offsetting, repairing, and volume meshing conforming to generic
triangle sets.

CGAL [The CGAL Project 2019], probably themost commonly used
library in Geometry Processing, supports boolean operations using
Nef polyhedra. Explicit meshes may be converted to this specific
volumetric representation to take advantage of these functionali-
ties. Minkowski sums are similarly supported [Hachenberger 2009].

Fast and Robust Mesh Arrangements using Floating-point Arithmetic •

These approaches are robust and correct but slow due to the use
of exact arithmetic. Since for boolean operations the intersection
points are usually sparse and thus a minimal subset of the total
number of vertices of the mesh, hybrid geometric kernels exhibit
performance advantages [Attene 2017].

The plane-based representations introduced in [Sugihara and Iri
1990] and taken up in [Bernstein and Fussell 2009] and [Campen and
Kobbelt 2010a] can be exploited to efficiently compute Minkowski
sums and offset surfaces [Campen and Kobbelt 2010b]. If the input
is closed and orientable, intersecting triangles can be classified de-
pending on the boolean operation [Barki et al. 2015] to efficiently
obtain the resulting mesh. When offsetting a mesh, if care is taken
while tracking its outer surface, only a subset of the intersections
need to be resolved [Jung et al. 2003].
Resolving intersections is crucial to repair raw meshes [Attene

et al. 2013] and make them usable in broad application contexts. Ap-
proaches such as [Bernstein and Fussell 2009; Campen and Kobbelt
2010a] require to convert the mesh into other representations. This
approach is not appropriate when surface attributes (e.g., textures
or colors) must be preserved, and the split must operate directly
on the triangles [Attene 2014]. The construction of a tetrahedral
mesh starting from its unprocessed surface shell [Hu et al. 2019,
2018] is another problem that needs, first, to find and compute the
possible intersections. A parallel line of recent work focuses on solv-
ing PDE-based geometry processing problems without addressing
intersections at all. Sellan et al. [2019] allows to define smooth func-
tions on arrangements of partially overlapping discrete volumes,
and [Sawhney and Crane 2020] extended Monte Carlo rendering
techniques to a variety of classical mesh processing tasks.

2.3 Numerical Approaches
Robust geometry processing often relies on geometric predicates
that guarantee an exact program flow independently of round-off
errors [Lévy 2016; Shewchuk 1997]. A typical predicate calculates
the sign of an expression, typically a homogeneous polynomial
(e.g., a determinant). Evaluating the expression using floating-point
arithmetic may lead to an incorrect sign that, in turn, may quickly
put an algorithm in an inconsistent state, cause infinite loops, or
even lead to a crash [Li et al. 2005]. Arbitrary precision numbers
[Fousse et al. 2007] solve the problem, but the slowdown is often
unacceptable. Arithmetic filtering [Devillers and Pion 2003] is a
more efficient alternative: the evaluation of the expression is in
floating-point arithmetic but, along with it, an upper bound for
the rounding error is computed. If the magnitude of the evaluated
expression is larger than the error bound, its sign is correct. If not
(i.e., the filter fails), the predicate is re-evaluated using arbitrary
precision. If the failure rate is low enough, absolute precision rarely
comes into play, and consequently, the slowdown is acceptable.
The error bound can be based on the expression only (static fil-

tering), or it may use actual input variables (dynamic filtering). For
static filters [Fortune and VanWyk 1993], the error is pre-calculated,
the run-time overhead is extremely low, but the failure rate is rela-
tively high. Conversely, the error in dynamic filters [Brönnimann
et al. 1998] is computed at each predicate call, leading to higher

overhead and fewer failures. Semi-static filters [Meyer and Pion
2008] are a trade-off of the two approaches.

These techniques are correct as long as their input is exact. If the
predicate input is affected by an error, guarantees are lost. Thus, if
a predicate uses intermediate constructions, state of the art solutions
rely on lazy exact evaluation [Pion and Fabri 2011]. Unfortunately,
these solutions are far too slow when compared with floating-point
implementations. For some algorithms, however, the construction
itself can be embodied in the predicate’s expression, and floating-
point filtering can be used [Attene 2020]. Similarly to us, [Wang
et al. 2020] exploits the indirect predicate concept, introducing two
versions of the orient3D predicate where the first parameter is
implicit and the other three are explicit. We do not make use of their
predicates.
Building on the [Attene 2020] idea, in this paper we introduce

the following novel contributions:

• a classification of the vertices in an arrangement based on
their originating input elements (Sect. 4.1);

• a new set of indirect predicates that can operate on any vertex
type and combination (Sect. 4.2, 4.3);

• an original mesh arrangement algorithm that fully exploits
the new predicates outperforming state of the art both in
speed and memory efficiency (Sect. 5).

3 PROBLEM STATEMENT AND POSITIONING
We consider a generic set of triangles T with no assumptions, and
identify their arrangement in space, that is, a subdivision of the space
in cells bounded by the input triangles. To explicitly represent the
bounding surface of each cell we subdivide intersecting triangles,
thus constructing new points to represent the intersections and
connecting them to form the sub-triangles. An example is shown in
Figure 2 . We achieve this result by first cleaningT from degenerate
(null area) elements, and then resolving all the intersections on the
remaining triangles, thus producing a modified set T ′. Therefore,
triangles inT ′ are not only geometrically coincident withT but also
form a valid simplicial complex, meaning that they are either disjoint
or connected through a shared sub-simplex (i.e., they have an edge
or vertex in common). We can, eventually, compute the explicit
geometry of each cell of the space partition by region growing on
the simplicial complex generated in this way.

The most critical part of the computation of an arrangement is the
representation of points of intersection. These points may not admit
an exact floating-point representation. If this is the case, the simple
solution of using the highest possible resolution representation,
the double type, still introduces an approximation error that may
put the algorithm in an inconsistent state, generating a partition
of the space with a wrong topology, and even program crashes [Li
et al. 2005]. State of the art approaches overcome this issue by
using rational numbers, which are expressed as fractions between
arbitrary length integer numbers and guarantee exact geometric
tests. Doing computation with these numbers often requires to
multiply them to compute a common denominator, generating a
much bigger (and bit-wise longer) integer, and eventually leading to
an explosion in the memory footprint and the amount of overhead
necessary to perform even simple arithmetic operations.

• Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco Attene

Fig. 2. The arrangement operation applied to some significant examples. Top
to bottom: a simple case of a sphere intersecting a cube (110 intersections,
0.007 seconds); a randomly generated set of 100 intersecting triangles (5537
intersections, 1.06 seconds); the model 40509 of the Thingi10K [Zhou and
Jacobson 2016] dataset (2712 intersections, 0.08 seconds).

Our main contribution is a novel method to robustly reconstruct
the subdivided triangles T ′ without using the coordinates of inter-
section points. In our method, indeed, these points are implicitly
represented in terms of the input geometric entities that generated
them. Their relative positions, the program flow and the connectiv-
ity of T ′ are robustly determined by a novel set of exact geometric
predicates. In other words, we can never lose or distort the informa-
tion contained in the input set.
In Section 4, we first introduce our novel representation for im-

plicit intersection points, as well as the set of geometric tests they
support. In Section 5, we illustrate our pipeline for the computation
of mesh arrangements.

4 REPRESENTATION AND PROCESSING OF IMPLICIT
INTERSECTION POINTS

Our implicit intersection points keep the memory of the supporting
planes and lines of the triangles and edges that generated them
(Figure 3), and the vertices of the supporting entities are part of the
input, hence exact. We can, thus, perform the computations avoid-
ing any approximation error introduced by explicitly representing
coordinates with floating-point numbers. At the same time, we can
avoid paying the high computational cost of using arbitrarily precise
rational numbers, as done in previous works [Attene 2017; Zhou
et al. 2016].

v₀

v₃

v₄

v₅

v₂

v₁

v₀

v₁
v₂

v₃

v₄

v₅
v₆v₇

={L(v₀,v₁),P (v₃,v₄,v₅)} ={P (v₀,v₁,v₂),P (v₃,v₄,v₅),P (v₄,v₆,v₇)}

Fig. 3. On the left, five explicit points represent an implicit point at the
intersection between two triangles (yellow dot): two defining the supporting
line L of an edge (in red), and three defining the supporting plane P of the
other triangle. On the right, a point at the intersection of three or more
triangles (blue dot) requires nine explicit points, defining the supporting
planes of three triangles.

But, using this strategy, we do not know the actual coordinates
of the intersection points during the execution, and this implicit
representation obliges us to define an entirely new framework in-
side which we can use these points for computation. In particular,
creating a mesh arrangement requires the ability to cut each input
polygon along its intersections with other polygons. Each polygon
containing intersections becomes, via decomposition, a planar mesh
where intersections (points and segments) are elements of the mesh
(vertices and edges), and the union of all the faces is the original
polygon.
Using an explicit representation, this is a relatively simple task.

Still, in our framework, this requires to robustly discover the relative
position of all the intersection points for existing mesh elements,
and implicit points may describe the intersections and the involved
mesh elements.
We devote this section to describe how to implement these core

functionalities for sets of implicit points, as well as for hybrid sets
made by both implicit and explicit (i.e., part of the input) points.
This framework reprises most of the ideas on indirect predicates
recently published by Attene [2020], which we extended as detailed
in the remainder of this section.

4.1 Point representation
Our algorithm performs computations involving three different
types of points, in terms of representation:

• explicit (i.e., input) points, for which exact floating-point
coordinates are known a priori;

• points implicitly defined by the intersection of two trian-
gles. We represent these points indirectly using five explicit
points; two points to define the supporting line of one trian-
gle edge, and three points to define the supporting plane of
the other triangle (Figure 3, left);

• points implicitly defined by the intersection of three or
more triangles. We represent these points indirectly with
three triplets of explicit points, for a total of nine; each triplet

Fast and Robust Mesh Arrangements using Floating-point Arithmetic •

defines one of three linearly independent intersecting trian-
gles (Figure 3, right);

Explicit points are the easiest to use for computation because they
admit trivial (e.g., lexicographic) sorting, can be directly tested for
coincidence, and are already supported by existing exact orientation
predicates [Lévy 2016; Shewchuk 1997]. Conversely, these basic
functionalities become tricky to implement for implicit points. How
can we say that a point is lexicographically smaller than another
point if we do not have their coordinates? Even a simple coincidence
test becomes non trivial. Indeed, we note that the same point may
be generated by intersecting different input elements, which means
that its definition is not unique. E.g., for clusters of n > 3 triangles
that intersect at a unique point, any possible triplet of non-coplanar
triangles defines the same point, though with a different internal
representation. Our key to implement these functionalities has been
a set of novel geometric predicates that can operate on any combina-
tion of point types. Each of our predicates substitutes implicit point
expressions within the expression of the predicate itself. Within
this combined expression, all the variables are (exact) input values,
and the predicate can always return an exact sign thanks to a clever
multi-stage filtering as follows: first, all the calculations are done in
floating point arithmetic. Along with the expression, a semi-static
filter is also computed. If the magnitude of the evaluated expression
is larger than the filter value, then its sign is guaranteed correct, and
the process stops. If not, everything is recomputed using interval
arithmetic. If the resulting interval does not contain the zero, the
sign is correct and we stop. If not, we recompute everything using
floating point expansions which always guarantee correctness. This
guarantees absolute precision in the computation since every de-
cision is based on the exact floating-point coordinates of the input
points. It also guarantees efficiency because, for the large majority
of cases, floating point calculations are precise enough and there is
no need to switch to slower computation models.

The following subsections address orientation, sorting, and coin-
cidence problems of implicit points.

4.2 Point orientation
The computation of a mesh arrangement spends most of the time
performing two operations (Fig. 4(c)):

• triangle subdivision - intersection points are inserted to split
an input triangle;

• conformality enforcement - the subdivided triangle is locally
retriangulated so as to make intersection segments become
(unions of) triangulation edges.

At their very core, the two operations are based on the same sim-
ple geometric test: the computation of the relative position, on a
plane, of a point and a line. This operator is called orient2d and
– for points having explicit floating-point coordinates – is usually
available in any geometry processing kernel. Our threefold represen-
tation of points requires us to be able to reliably perform orientation
tests with any possible combination of the points described in Sec-
tion 4.1. No available geometric toolkit can do this.
Even though our points are embedded in R3, orienting a point

about a given line is intrinsically a two-dimensional problem, and
requires to express the coordinates of the points in a 2D frame.

The rotation that brings the points in a canonical 2D frame (e.g.,
the xy plane) would require applying a rotation matrix that may
introduce round-off errors, possibly poisoning the result of the
orientation test. Absolute precision can be achieved by applying
orthogonal projections, which only require to drop a coordinate and
therefore do not introduce imprecision in the other two coordinates.
Deciding which coordinate to drop is tricky because axis-aligned
triangles may project to segments; hence, triplets of points that are
not collinear in 3D may become collinear when projected in the 2D
plane. In our application, we robustly compute the coordinate to
drop by analyzing normal orientation.

Our algorithm considers one triangle t at a time and must resolve
orientation predicates on its plane. Let t have vertices vi ,vj ,vk ,
we consider the normal vector ®n = (vj − vi) × (vk − vi). When
calculating the orientation of three points on t , we just drop the
coordinate associated to the biggest component between | ®nx |, | ®ny |,
and | ®nz |. This guarantees that the triangle will not become degen-
erate under the orthogonal projection we defined. Computing ®n
with standard floating-point operations may become unreliable for
almost degenerate triangles. Even worse, the entries of ®n might not
even be representable in the machine’s floating-point system, mak-
ing it practically impossible to compute it exactly. Luckily, in our
algorithm we only need to detect its biggest component, which we
can robustly do as described in the following subSection 4.2.1. Once
we are able to project triangles in the 2D space, we just need to gen-
eralize the orient2d operator to handle any possible combination
of explicit and implicit points (Sec. 4.2.2).

4.2.1 Robust orthogonal projection. The vector ®n can be computed
using floating point arithmetic but, if the triangle is nearly degener-
ate, the magnitude of its largest component ni ∈ {|®nx |, | ®ny |, | ®nz |}
might be smaller than the numerical error. In this case, we can no
longer guarantee that such a component is non-zero as it should be.
We implemented a semi-static filter to make sure that ni is far

enough from zero. Such a filter, as calculated by [Attene 2020] for the
expression of ni , is εn = 8.88395 10−16δ2, where δ is the maximum
magnitude among the nine coordinates ofvi ,vj andvk . Ifni is larger
than εn , we can safely use it to proceed. Otherwise, we recalculate
it exactly using expansion arithmetic [Attene 2020].

One might argue that, instead of computing the triangle normal,
we can simply drop one of the three coordinates, and then verify
whether the so-projected triangle becomes degenerate (i.e. its three
vertices become collinear). If so, the coordinate to be dropped must
be changed. Despite simpler to implement, this method may easily
create near-degenerate projections even for well shaped triangles,
ultimately requiring more switches to expansion arithmetic, with a
consequent slowdown.

4.2.2 Generalized 2D orientation. In the easiest case where all the
three points are explicit, any standard orient2d predicate can be
used (i.e. by selecting two of the three coordinates). If input points
are both explicit and implicit, but implicit points are all of the same
kind, indirect versions of the predicate can be implemented as de-
scribed in [Attene 2020]. Herewith we need to mix explicit and
different sorts of implicit points.

We have implemented three versions of the orient2d predicate,
one for each of the three possible orthogonal projections (XY, YZ,

• Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco Attene

ZX). Any such predicate is basically a wrapper that, first, determines
the type of the three input points according to the classification
given in Section 4.1 and, second, evaluates a proper expression
depending on these types. Any input point can be Explicit (E), a
Line-plane intersection (L), or an intersection of Three independent
planes (T), which leads to a total of 27 possible combinations (EEE,
EEL, ELE, LET, ...) of input points. Fortunately, the permutation
of input points has a predictable outcome (e.g. orient2d(a,b,c)
= -orient2d(c,b,a)), which reduces the number of necessary
expressions to nine, plus the standard orient2d representing the
EEE case.

Herewith, we describe how the expression for orient2d_XY_LTE
can be derived. We refer to Appendix A for the other eight versions.
The input parameters for this predicate are one Line-plane intersec-
tion (L), one intersection of Three independent planes (T), and one
Explicit point (E). Points are projected on the xy plane.
To start with, we consider the line-plane intersection point pL

defined as the intersection of an edge (q1, q2) and a triangle (r, s, t)
[Attene 2020]. Therefore:

pL =
(
λLx
dL
,
λLy

dL
,
λLz
dL

)
where

dL =

������q1 − q2
s − r
t − r

������ , n =

������q1 − r
s − r
t − r

������
λLx = dLq1x + nq2x − nq1x

λLy = dLq1y + nq2y − nq1y

λLz = dLq1z + nq2z − nq1z

Note that pL is undefined if dL = 0, which happens if e and t are
parallel or degenerate.

Let pT be defined by the intersection of three triangles (v1,v2,v3),
(w1,w2,w3), (u1,u2,u3). Therefore:

pT =
(
λTx
dT
,
λTy

dT
,
λTz
dT

)
,dT =

������nvnwnu
������

where

λTx =

������pv nvy nvz
pw nwy nwz
pu nuy nuz

������
λTy =

������nvx pv nvz
nwx pw nwz
nux pu nuz

������
λTz =

������nvx nvy pv
nwx nwy pw
nux nuy pu

������
pv = nv · v1, pw = nw ·w1, and pu = nu · u1.

and

nv = (v2 −v1) × (v3 −v2)

nw = (w2 −w1) × (w3 −w2)

nu = (u2 − u1) × (u3 − u2)

If dT = 0, pT is undefined.
The expression for orient2d_XY_LTE(pL,pT ,pE) can be obtained

by substituting the expressions of pL and pT in the expression
(pTx − pLx)(pEy − pLy) − (pTy − pLy)(pEx − pLx) of the standard
orient2d predicate as follows:

(dLλTx − dT λLx)(dLpEy − λLy) − (dLλTy − dT λLy)(dLpEx − λLx)

d2LdT

In this rewriting the predicate value is expressed as a fraction of
two homogeneous polynomials on input coordinates. The sign of
this fraction can be exactly calculated as described in [Attene 2020]
using the following semi-static filters for floating point calculation
of dL , dT , and for the numerator ∆:

εdL = 4.884981308350689 10−15δ3L
δL = max{|q1x |, |q1y |, |q1z |, |q1x − q2x |, |q1y − q2y |, |q1z − q2z |,

|sx − rx |, |sy − ry |, |sz − rz |, |tx − rx |, |ty − ry |, |tz − rz |, |q1x − rx |,

|q1y − ry |, |q1z − rz |}

εdT = 8.704148513061234 10−14δ6T ,
δT = max{|v1x |, |v1y |, |v1z |, |u1x |, |u1y |, |u1z |, |w1x |, |w1y |, |w1z |,

|v3x −v2x |, |v3y −v2y |, |v3z −v2z |, |v2x −v1x |, |v2y −v1y |,

|v2z −v1z |, |w3x −w2x |, |w3y −w2y |, |w3z −w2z |, |w2x −w1x |,

|w2y −w1y |, |w2z −w1z |, |u3x − u2x |, |u3y − u2y |, |u3z − u2z |,

|u2x − u1x |, |u2y − u1y |, |u2z − u1z |}

ε∆ = 2.184958117212875 10−10δ14∆ ,
δ∆ = max{|pEx |, |pEy |, δL, δT }

Our predicate implementation calculates dL , dT and ∆ in this
order, while verifying that their magnitudes are all larger than their
respective filters. If this is true, the sign of the fraction is deter-
mined by combining the signs of the numerator ∆ and dT (dL may
be ignored for this as it appears as a square in the denominator),
and the result is guaranteed correct. Otherwise, as soon as one of
these values is too close to zero, an ambiguity occurs and the float-
ing point calculation is stopped. In this latter case, everything is
recomputed using interval arithmetic and, if this is ambiguous too,
we eventually revert to floating point expansions, which always
guarantee correctness.

4.3 Point sorting
Given an edge e(va,vb), and the list of vertices that partition it
in sub-segments V (e) = {v0,v1, ...,vn }, if V is sorted such that
va < v0 < v1 < ... < vn < vb , then the splitting process is much
simpler and efficient. In fact, the first point splits edge e and, for
any i > 0, the segment containing vi is always (vi−1,vb), hence
no explicit point in segment test must be performed to find it, as

Fast and Robust Mesh Arrangements using Floating-point Arithmetic •

would be required for an unsorted list of splitting points. We exploit
point sorting to organize intersection points that are incident to
input triangle edges. As for the orient2d case, sorting is trivial for
explicit points, though less trivial for implicit points.

Aswe do for the generalized 2D orientation, we have implemented
an indirect version of the pointCompare(a,b) predicate to deter-
mine if a point a is lexicographically smaller than, equal to, or larger
than another point b. pointCompare(a,b) relies on the subsequent
evaluation of pointCompare_on_X(), pointCompare_on_Y() and
pointCompare_on_Z() predicates, which compare the first, second
and third coordinates respectively. Herewith we describe how to
implement pointCompare_on_X_LT(), while we point the reader
to Appendix B for the other combinations.
pointCompare_on_X_LT(pL, pT) returns the sign of pLx −pTx .

With reference to Section 4.2.2, pLx = λLx /dL and pTx = λTx /dT .
The predicate expression can be written as:

∆

dLdT
=

dT λLx − dLλTx
dLdT

And the floating point filter for ∆ is:

ε∆ = 4.321380059346694 10−12δ10∆ ,
δ∆ = max {δL, δT }

5 MESH ARRANGEMENTS
After introducing the set of numerical tools to process mixed explicit
and implicit points, we present the algorithm for the computation of
a mesh arrangement. Our method is conceptually no different from
previous approaches (e.g., [Attene 2014; Zhou et al. 2016]), but the
implicit representation of intersection points necessitates a careful
re-design of every single step.

Figure 4 illustrates our pipeline. In the first stage we remove zero
area elements and detect pairwise triangle intersections. This step
identifies all the new segments and the majority of the intersection
points to be inserted inT to secure mesh conformity (Section 5.1). In
the second step we process each triangle t ∈ T separately, inserting
all the previously identified intersection points (Section 5.2) and
segments (Section 5.3). Conflicts between segments may reveal
new intersection points involving more than two input triangles,
and therefore not identified at the previous step. With this, the
full set of intersection points is determined. Coplanar triangles
may intersect not only at shared points or edges, but also share
polygonal pockets, requiring special attention (Section 5.4). Finally,
the last two (optional) steps of the pipeline comprise: converting the
coordinates of the intersection points from implicit to explicit form
for downstream applications (Section 5.6); and export an explicit
piece-wise representation of the arrangement cells (Section 5.5).

5.1 Intersections: localization and assessment
The goal of the algorithm’s first step is to detect, for each non-
degenerate triangle t ∈ T , the list of triangles intersecting it, and
generate the corresponding list of intersection points and segments.
A triangle could potentially intersect all the other elements of T .
Therefore, in the worst-case scenario the detection of intersections
has quadratic complexity. In practice the number of intersections is

often much smaller, and involve just a small amount of elements.
However, in specific applicative scenarios (e.g., when converting
a smooth CAD model to a piece wise linear mesh) the automatic
tessellation can contain long and skinny triangles traversing a large
number of mesh elements. These pathological cases could be very
close to the worst-case scenario, and contain several millions of
intersections. Our method scales well also on these pathological
cases (Figure 1).

To speed up the detection process, we employ spatial data struc-
tures. We first fill a Kd Tree with all the non-degenerate input
triangles. We start from the input bounding box and, at each step,
consider the cell containing most triangles and split it in two equal
halves along its longest direction. We stop when all the cells contain
less than a given number of triangles (10K in our implementation)
or when a maximum number of cells has been created (10K). For
the sake of efficiency, we consider a triangle to be in a cell if its
bounding box intersects the cell. At the end of this process, for
each cell we perform an all-with-all triangle-triangle intersection
check [Guigue and Devillers 2003]. At this early stage, all the points
involved are explicit, therefore accurate intersection tests can be
performed using standard orientation predicates [Shewchuk 1997].

Detection of intersection points and edges. As depicted in Figure 5,
two intersecting triangles ti , tj ∈ T may share a single point, a line
segment, or a polygon. If ti and tj share three common vertices,
they are coincident, and we keep only one of them. If they share a
common edge, they can either form a valid simplicial complex or
intersect at a shared polygonal pocket; if they share zero or one
common vertex all types of intersections (point, edge, polygon) are
possible. For each of these cases, we perform intersection tests on
the sub simplices forming the triangles (points vs. segments, points
vs. triangles, segments vs. segments, segments vs. triangles) and
fill a map of the intersections. For each input triangle, the map
contains the points and segments to insert into it to secure mesh
conformity. Each newly generated intersection point is in implicit
form as detailed in Section 4.1, and appended to the point list. Note
that triangles may also intersect without defining any new point.
For instance, this happens when one vertex of ti lies inside tj (or on
one of its edges). In such a case, ti requires no splitting, and we add
the offending vertex of ti in the list of elements that split either tj or
one of its edges. Triangles sharing a polygonal pocket are marked
as coplanar and processed separately, as detailed in Section 5.4.

5.2 Adding intersection points
We now embed all the intersection points found at the previous step
in the connectivity, by splitting the elements of the input setT . This
process translates into breaking each triangle and each edge that
contains at least one intersection point. There is a specific order
to perform these operations that keeps the process safe. Splitting
edges first would change the set of triangles, damaging the map
between input triangles and intersection points.

Splitting triangles. Given a triangle t ∈ T and an intersection point
p strictly contained in it, we refine t by creating three sub-triangles
formed by connecting each of its vertices with p. We iteratively
split triangles containing multiple intersection points until all such

• Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco Attene

(a) Input (b) Detect all the intersections
(points and edges)

new
point

(c) Process each triangle separately inserting
points first, then inserting edges

(d) Output

Fig. 4. An illustrated summary of our pipeline: we start from a generic set of triangles, possibly containing disjoint, degenerate, and intersecting elements (a).
We remove triangles with null area and process the remaining items pairwise, detecting intersection points (yellow) and segments (red) (b). We then process
each triangle separately, adding intersection points first, and putting intersection segments in the tessellation afterward (c). Notice that conflicts between
intersection segments may reveal new intersection points (blue) generated by more than two input triangles, that could not be detected in the previous step.
The mesh is locally refined to accommodate the new element. We eventually recombine all sub-triangles, producing a valid intersection-free simplicial complex
(d).

(a) (b) (c) (d) (e)

Fig. 5. Two triangles of the input set can: be entirely disjoint (a); form a valid
simplicial complex (b); intersect at a single point (c); intersect at a segment
(d); be coplanar and share a convex polygonal portion (e). The first two cases
do not require processing. The latter three need to split some elements into
sub-triangles to ensure mesh conformity. Newly generated points are yellow,
intersection segments are red. Notice that for the (c,d,e) cases, we do not
exhaustively report all the possible combinations. An intersection point can
lie along an edge; an intersection segment can cross the perimeter of the
triangle; a polygonal pocket can be a polygon with three to six vertices.

points are embedded in the simplicial complex. Note that while
the first intersection point splits t , all the subsequent points split a
sub-triangle of t , that we need to identify beforehand. We efficiently
find the triangle containing each intersection point by keeping a
tree data structure rooted at the input triangle. Each tree node has
two or three children depending on the number of sub triangles:
three if the parent splits at an interior point, two if it splits at a
border point. Once we find a sub-triangle t ′ ⊂ t , we first test p
against its edges. If an edge containing p is found, we split the two
triangles t ′, t ′′ ⊂ t incident to it, obtaining four new sub triangles
and two new children in the data structure for both t ′ and t ′′. If p
is strictly inside t ′, we split it into three sub-triangles, appending
three children in the tree data structure. The point in triangle test is
exact: we perform it checking the orientation of the splitting point p
with respect to the three oriented edges forming the triangle t . If the
sign is always ≥ 0 or ≤ 0, then p is either inside or at the perimeter
of t . Note that while t has three explicit vertices, the triangles down
in the tree have from zero to three implicit vertices. Therefore, to
perform the point in triangle test we must use our novel orientation
predicates defined in Section 4.2.

Splitting edges. If an intersection point p belongs to the interior
of an input edge e , we split e at p and thus refine all its incident
triangles by creating two sub-triangles for each. As for the triangle
case, edges containing multiple intersection points raise the problem
of finding – for each such point – the sub-edge e ′ ⊂ e that contains
it. We sort intersection points from one endpoint of e to the other,
and process them in the resulting order. Doing so, we can optimally
locate the containing edge for each splitting point, avoiding explicit
tests. For details on the sorting procedure refer to Section 4.3.

5.3 Adding intersection segments
Adding all the intersection points in the complex does not yet guar-
antee mesh conformity. The endpoints of the segments defined by
the intersection of two triangles are, until now, treated indepen-
dently and may not be endpoints of an edge in the triangulation. In
this step of the pipeline we transform intersection segments into
mesh edges. Once inserted, these edges are marked as constrained,
meaning that they cannot be removed from the mesh, otherwise
conformity between intersecting elements will be lost again.

Given the endpointsvi ,vj of an intersection segment to be added
in the complex, the procedure for segment insertionworks as follows
(see the top line of Figure 6 for a pictorial illustration of the process):
starting from vi and following the mesh topology, we identify the
sequence of edges E = {e0, e1, ..., en } intersected by the segment
(vi ,vj). All the triangles incident to such edges are then removed,
generating a void in the mesh. The edge (vi ,vj) is then added to
the mesh, halving the void in two polygons. Each polygon contains
vi ,vj and the endpoints of edges in E lying to the left (and to the
right) of (vi ,vj). The polygon may also contain some dangling
edge, which must be included in the triangulation (Figure 8). This
procedure is equivalent to the one presented in [Shewchuk and
Brown 2015], and is guaranteed to work when the inserted segments
do not intersect.

In our case, conflicts between intersection segments are possible,
and correspond to configurations in the input where three or more
triangles intersect at a common point. We improved the algorithm
for segment insertion by handling the two possible cases depicted

Fast and Robust Mesh Arrangements using Floating-point Arithmetic •

in the bottom part of Figure 6. Namely, the case where the segment
being inserted intersects a previously inserted segment at an inner
point (bottom left), and the case where the intersection coincides
with one endpoint (bottom right).

In the first case, we insert a new implicit vertex in the mesh,
splitting the mesh edge containing it. Since each constrained edge is
defined by the intersection of two triangles, their intersection arises
at a point shared between three (or more) triangles (Figure 3, right).
To create the point we attempt to find three linearly independent
triangles that define the nine input points required to construct
an implicit vertex. If we fail, we are in a coplanar case, and we
proceed as described in Section 5.4. After the point insertion, both
cases can be handled in the same way, which consists of re-calling
the segment insertion procedure on the resulting sub-segments.
Iterating this procedure allows handling any possible configuration
in the input. We list the complete pseudo-code for segment insertion
in Algorithm 1.

5.4 Coplanar triangles
Coplanar triangles pose additional challenges to our pipeline and re-
quire special handing, for two main reasons: (i) we cannot implicitly
represent intersection points between two coplanar triangles using
the supporting plane of one triangle and the supporting line of one
edge of the other triangle, because all the points defining these enti-
ties are not linearly independent and therefore their intersection is
undefined; (ii) triangles may intersect at a shared polygon, creating
pockets with up to six sides. Splitting each triangle independently
generates multiple tessellations for these shared pockets, which can
be either identical or conflicting and thus require post-processing.
(Figure 7).

Representation of intersection points: to obtain a proper implicit
representation of intersection points between coplanar triangles, we
use an auxiliary tetrahedron centered at the origin of the coordinate
reference system. In the coplanar case intersections always occur
along the perimeters of each triangle. Given two conflicting triangles
and their intersecting edges, we represent the endpoints of these
intersections with the extrema of one edge and a triangle obtained
by pairing the second edge with one of the vertices of the auxiliary
tetrahedron, so that the generated triangle is not coplanar with
the first edge (Figure 9). Since the vertices of the tetrahedron are
linearly independent, if the two edges are not collinear at least one
such vertex is guaranteed to exist. Note that in the collinear case
the intersection would occur at the original endpoints of the edges,
therefore there would be no necessity to generate a new implicit
vertex.

Tessellation of shared pockets: Since we process and refine every
triangle separately, coplanar triangles that intersect at a shared
pocket will produce multiple tessellations for the same geometry
piece. If the triangulation of the pocket is the same in all its occur-
rences, duplicate triangles will be generated. Conversely, if each
coplanar triangle will generate a different tessellation for the same
pocket, conflicting triangles endowing new intersections will be gen-
erated. Since we cannot guarantee that the same polygonal pocket
will always receive the same triangulation, we proceed as follows:

ALGORITHM 1: addSegment(vbeg, vend)

Input: the endpoints vbeg, vend of a segment to be inserted in the
mesh (the points are already part of the mesh)

Output: a re-triangulation of the portion of mesh intersected by
(vbeg, vend), having the input segment as edge

if (vbeg, vend) is already a mesh edge then
return;

end
Pl =

{
vbeg, vend

}
;

Pr =
{
vend, vbeg

}
;

v = vbeg;
t = a triangle incident to vbeg and intersected by (vbeg, vend);
e = edge (e0, e1) opposite to v in t ;
while v , vend do

if e0 ∈ (vbeg, vend) then
addSegment(vbeg,e0);
addSegment(e0,vend);
return;

end
if e1 ∈ (vbeg, vend) then

addSegment(vbeg,e1);
addSegment(e1,vend);
return;

end
if e is an edge constrained then

create new point vnew = e ∩ (vbeg, vend);
split edge e at point vnew;
addSegment(vbeg,vnew);
addSegment(vnew,vend);
return;

else
if e0 is at the left of (vbeg, vend) then

append(Pl , e0);
append(Pr , e1);

else
append(Pl , e1);
append(Pr , e0);

end
end
t = triangle opposite to t along e ;
v = vertex opposite to e in t ;
e = edge incident to v and t , and intersecting (vbeg, vend);

end
triangulate(Pl);
triangulate(Pr);
return;

we keep a global map of the pockets generated by coplanar trian-
gles, which are uniquely identified by the sorted sequence of their
corners. When a new coplanar triangle is processed, we identify its
pockets and check for their existence on the map. If the pocket is
not in the map, this is its first occurrence, we add its tessellation to
T ′, and we insert the list of corners in the pocket map. If the map
already contains the pocket, we already have its triangulation, and

• Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco Attene

vi
jv

vi
jv

vi
jv

vi
jv

vi
jv

vi
jv

kv

lv vi lv

kv
jv jv

mv
jv

vi jv

kv lv

Fig. 6. Top line: insertion of the constrained segment (vi , vj). All the crossed triangles are progressively identified, starting from vi and following the mesh
connectivity. Their removal leaves a hole split into two halves by the new edge. We triangulate each half separately with simple earcut. Bottom line, on the left
three figures: the segment to be inserted may intersect some pre-existing constrained edge. The intersection point between (vi , vj) and (vk , vl) (in red)
could not be detected by testing triangles for intersection pairwise. We add the new point vm to the mesh and then split (vk , vl) in (vk , vm) and (vm , vl).
Afterward we triangulate the pocket traversed by (vi , vm), and we recall the segment insertion with (vm , vj). Bottom right figure: segment (vi , vj) intersects
two vertices, one (vl) belongs to a constrained edge (in blue), the other (vk) does not. The insertion performs progressive split of (vi , vj) for any intersected
vertex using the strategy explained before.

Fig. 7. Coplanar triangles may overlap at a polygonal pocket with up to six
sides (left, red). Since we process each triangle separately, the tessellations
of the same pocket may differ (middle). We keep track of coplanar pockets,
and eventually, we use only one tessellation on all the triangles sharing the
same pocket (right).

vi
jv

vi
jv

kv
lv

vi
jv

kv
lv

Fig. 8. The insertion of the segment (vi , vj) requires to remove five mesh
triangles, leaving a dangling edge ,(vk , vl), that does not intersect it. The
dangling edge may be a previously inserted constrained edge; therefore, we
cannot remove it from the tessellation. We, thus, store the lower polygonal
hole as the vertex chain {vi , vj , vk , vl , vk }, repeating vertex vk twice.
The triangulator ignores the degenerate triangle vk , vl , vk , producing a
valid triangulation that preserves the edge (vk , vl).

therefore we discard the newly generated triangles (Figure 7). The
detection of a pocket is performed with a simple region growing
approach. Given an input triangle, we first insert all its intersection
points and edges. Then, we start from each sub-triangle and expand
to edge-adjacent triangles if the shared edge is not an intersection
segment. All clusters with all boundary edges that are intersec-
tion segments identify a pocket, which we then test as described.
Note that we apply this routine only to those triangles that were
considered coplanar during the intersection detection (Section 5.1).

t0

t1
t2

t3

v3

v4
v2

v5 v0

v1

={L(v ,v),P (v ,v ,t)}3 4 0 2 3

Fig. 9. Points defined by the intersection of coplanar triangles (yellow)
cannot be implicitly defined using only triangle vertices, because they are
not linearly independent. We define them using the supporting line of one
of the edge (v3, v4), in red, and a plane passing through the endpoints of
the other edge (v0, v2) and one vertex (t3) of an auxiliary tetrahedron (in
green). For any possible plane containing two intersecting triangles, there
always exists at least one vertex of the tetrahedron not coplanar with them.

Since, in practice, coplanar intersecting triangles seldom occur, the
overhead of this procedure is negligible.

5.5 Explicit arrangements
When all the self-intersections are fixed, we can calculate the ar-
rangement cells by region growing following [Attene 2018]. Note
that this requires to radially sort incident triangles around a non-
manifold edge, which can be done by extending the orient3d predi-
cate to implicit points as explained in [Attene 2020]. Alternatively, if
an explicit volumetric representation is required, the simplicial com-
plex can be passed to any standard tetrahedral meshing algorithm
(e.g., [Si 2015]). Tetrahedra can eventually be clustered to form the
arrangement cells.

5.6 Conversion to explicit coordinates
The coordinates of intersection points must be converted from im-
plicit to explicit form to make our results available for downstream

Fast and Robust Mesh Arrangements using Floating-point Arithmetic •

applications. It is possible to do this precisely if the calling appli-
cation supports rational numbers, but this is rare in practice. Per-
forming this operation in floating-point while ensuring that there
is no introduction of new degenerate elements or intersections is
an extremely tricky – yet still open – problem, referred to as snap
rounding [Devillers et al. 2018]. In practice, current implementations
(including ours) use exact predicates to generate the combinato-
rial structure of the mesh and naively compute intersection points
by solving small linear systems in double precision, finding the
floating-point numbers that are closest to the precise intersection
coordinates.
On our benchmark dataset with more than 4k models, naively

snapping coordinates to double-precision leads to valid (intersection
and degeneracy free) simplicial complexes in 85.2% of the cases. In
case some error occurred, we share here a heuristic that fixes the
problem in the vast majority of the cases. In short, we cast the so
generated coordinates from double to single precision, and then run
our algorithm again, resolving the newly generated intersections.
The idea is that casting to a lesser precision number snaps offending
points in double precision into the same point in single precision,
which can then be converted again to a double-precision number
after resolving the intersections. We applied this heuristic in all the
cases where the naive rounding failed, and we managed to fix 96%
of the models. If iterated, this heuristic shows success in 99.95% of
the cases experimented in [Zhou et al. 2016].

6 RESULTS AND APPLICATIONS
We implemented our tool in C++, using ImatiSTL [Attene 2017]
for intersection detection and CinoLib [Livesu 2019] for mesh pro-
cessing. ImatiSTL was compiled in Fast mode to disable hybrid
arithmetic which we do not use. To grant full reproducibility, upon
acceptance we will release both the source code and the data of all
our tests to the public domain.

Similarly to recent tools for robust geometry processingwe demon-
strate the capabilities of our algorithm on a notoriously difficult
benchmark, which comprises all the meshes in Thingi10K [Zhou
and Jacobson 2016] that contain at least one intersection. Overall, it
amounts to 4408 models, some of which are well known for being
extremely challenging, and for pushing the demand of CPU and
memory resources way above the limits of commodity hardware
(Figure 1). For the sake of a fair comparison, we have removed the
model in Figure 1 from our dataset, that hence is made of 4407 mod-
els. For validation, we compared the meshes generated with our
method with the output of libigl (counting the number of verties,
edges and triangles), verifying that these numbers always coincide.

Prior to this work, the state of the art in the field can be considered
to be the use of arbitrary precision arithmetic to explicitly represent
intersection points. Specifically, we compared against the publicly
available implementation contained in libigl [Panozzo and Jacobson
2014] (igl::copyleft::cgal::remesh_self_intersections),
which uses CGAL [The CGAL Project 2019] to represent rational
numbers. Note that while CGAL itself is just a wrap to an external
library for the pure rational part, its internal infrastructure allows
for a fast (lazy) evaluation, which essentially undertakes the com-
putations using fast interval arithmetic and switches to the costly

evaluation of the rational only when ambiguities occur. To the best
of our knowledge, this infrastructure makes CGAL’s rationals the
most performing in the field of robust computing. On the negative
sides, this infrastructure is not thread safe, which requires to encap-
sulate any piece of code that uses CGAL’s numbers into a critical
section, making the parallel code only slightly faster than its serial
counterpart.

In a sense, CGAL’s lazy evaluation is similar in spirit withwhat we
propose in this work, but with two important differences: (i) in our
case interval arithmetic is a second choice; our first computational
model is pure floating point arithmetic, which is from three to eight
times faster than interval arithmetic [Brönnimann et al. 1998]; (ii)
we do not count on costly rationals as backup strategy, but rather
squeeze the power of the floating point hardware a bit more by
using expansions to evaluate predicates on our implicit points. Not
only this makes us faster in serial mode, but also allows to better
exploit modern multi-core hardware, evaluating predicates on our
implicit points in parallel.

Our experimental setup is as follows: we compiled two versions of
our algorithm and libigl’s code, one single threaded and one parallel
(libigl’s code is natively parallel in the intersection tests. We edited
that part in order to make also a serial version of it). We then batch
processed all the 4407 models in our dataset with all four programs
on a cluster equipped with 12 cores and 128GB or RAM, keeping
trace of running times and memory consumption.

In Figure 10 we compare our running times with libigl. As far as
the serial implementation is concerned, our method runs faster in
99.3% of the models. Considering the parallel code, we are faster in
94.7% of the models, also greatly reducing the overall running time,
and processing the entire dataset in less than one hour. Interestingly,
due to the limits in the parallelization of codes that use CGAL’s
numbers, our serial method results faster than parallel libigl in the
63.6% of the cases, also with a lower global running time across
the whole dataset (2.5 hours against 4.6 hours). These numbers
clearly indicate that our implicit constructions allow for a major
speedup when compared with prior art, also scaling better on multi-
core architectures. The figure also shows that in some cases libigl
is faster than our method: in the serial-vs-serial experiment this
happens on 31 small models requiring very short running times
which may easily fluctuate from run to run due to external factors.
There is one noticeable exception though, where the serial version of
libigl is faster than our method (model ID: 101633 – 2350secs for us,
1350secs for libigl). In this case, nearly all of the 1.7M implicit points
are intersections of three or more planes, which means that our
segment insertion algorithm heavily enters recursion. Note that on
the parallel-vs-parallel libigl does not improve, andwe become faster
on this model too (second line in Table 1). In the aforementioned
table we restrict our analysis on the ten most challenging models in
the dataset where both methods could converge (i.e., the ones with
the highest number of intersections, excluding the bridge in Figure 1).
Our method is faster at processing all such models, running in a
fraction of their time (from 9% to 63%, average 18.1%), also exhibiting
similar gains in the memory footprint (from 23.2% to 77.54% of their
memory, on average 38.6%). Our ability to be more effective at
handling the hard cases is further demonstrated in Figure 11, where
we group models based on their running times. The first group of

• Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco Attene

%

Ours (serial) vs libigl (serial)

5.8%

33% 32.9%

17.3%

5.8%

2.5%
1% 0.5% 0.3% 0.2%

0.7%

TOTAL TIME
Ours2.5h
libigl5.7h

%

Ours (serial) vs libigl (parallel)

34.6%

9.2%

5.3%
3.9%

2.5% 2.4.% 1.7% 1.7%
1.1% 1.2%

36.4%

TOTAL TIME
Ours2.5h
libigl4.6h

%

Ours (parallel) vs libigl (parallel)

4.6%

13.3%

10.8%

20%

6.5%

4.4%

1.9%

3.1%

5.3%

17.2%

12.9%
TOTAL TIME

Ours<1h
libigl4.6h

Fig. 10. Comparison with libigl on the 4K intersecting models present in Thingi10K [Zhou and Jacobson 2016], excluded the model shown in Figure 1. Statistics
can be read as follows: the ten bars in shades of blue count the models in the dataset where our method run in a fraction of the time required by libigl (from
left to right: (0%, 10%], (10%, 20%], . . . , (90%, 100%] of their running time). The negative bar reports on the number of times libigl was faster than us: with the
exception of one pathological case, these negative bars collect mostly small models requiring very short running times. Our method runs faster in more than
99% of the cases in serial mode, and in more than 94% of the cases in parallel mode. Moreover, our serial implementation runs faster than parallel libigl in more
than 60% of the cases.

Ours (parallel)

libigl (serial)

Ours (serial)

libigl (parallel)

(0-0.5] (0.5-1] (1-5] (5-10] (10-60] >60

2k

4k

6k

8k

10k

Fig. 11. Cumulative elapsed time w.r.t. the difficulty of the input. We mea-
sure difficulty of a model as the time spent by an algorithm to detect and
resolve all its intersections. Based on this measure, we cluster our dataset in
six subsets, each containing all the models whose processing time belongs
to a specific range. Each group of four bars represents the total time spent
by our reference algorithms to process the entire subset. All times are in
seconds.

four bars represents the total time spent to process all the easiest
models (i.e., those that terminate in less than 0.5 seconds each). The
second group is the time spent for slightly harder models (i.e., those
with running time in between 0.5 and 1 seconds), and so on. It is
evident that, as input models become harder, our gain w.r.t. the state
of the art becomes more significant.

Bottlenecks. In Figure 12 we show an aggregated statistic on the
time spent by our algorithm in each step of the pipeline. These
numbers refer to the serial implementation. As can be noticed, the
algorithm spends most of its time (44.3%) adding intersection seg-
ments into the triangulation. The second most time consuming step

is the generation of the Kd Tree to speed up the computation of
intersections (24.2%), followed by the classification and generation
of implicit intersection points (13.8%). Despite these numbers may
suggest that the edge insertion is the bottleneck of our code, we
found out that in 3914 cases out of 4407 the computation of the Kd
Tree was the most time consuming step in the pipeline. In 320 cases
the bottleneck was the segment insertion, and in the remaining 173
cases the point insertion. We conclude that for models having a
moderate amount of intersections, the refinement of the geometry
is practically inexpensive, and most of the computation is devoted
to locate the actual intersections points. For challenging models
exhibiting a huge amount of intersections, the actual refinement
dominates.

Filtering. Filter values are calculated as in [Attene 2020], with
FP rounding set to +∞ to be conservative. We counted the number
of calls of each of our predicates, and the number of filter fail-
ures. Failure rates are higher for predicates involving more implicit
points because more arithmetic operations (and hence more round-
ing) are required for the evaluation. Nonetheless, these more diffi-
cult predicates are also more rarely called. E.g., for model #105693,
orient2d_EEE is called 3102360 times, and the FP filter fails 71 times
(0.002%), whereas orient2d_TTT is never called. On model #66112,
orient2d_TTT is called twice, the FP filter fails both times, whereas
the interval filter never fails.

6.1 Applications
Mesh arrangements are the basic ingredient for a number of shape
processing tools. In this section we exploit our algorithm to show-
case a subset of them. While most of these tools are often regarded
as difficult to realize and time consuming to execute, their complex-
ity is largely linked with the difficulties of resolving intersections
between mesh elements. To this end, our fast and memory effi-
cient computation of mesh arrangements directly impacts both the

Fast and Robust Mesh Arrangements using Floating-point Arithmetic •

44.3%

Segment
insertion

24.2%
Kd Tree

13.8%

Intersection points
(classification and creation)

12.1%
Other

5.6%

Point
insertion

Fig. 12. Pie chart reporting how the total running time of our method
distributes across the various steps of the pipeline. These data refer to the
time spent processing our entire test dataset. Adding intersection segments
into the triangulation is by far themost dominant step, followed at a distance
by the construction of the spatial data structure that supports triangle-
triangle intersection queries.

Table 1. We compare here running time and memory footprint for the
parallel versions of our method and libigl [Panozzo and Jacobson 2014]. We
consider the ten models in Thingi10k [Zhou and Jacobson 2016] with the
highest number of intersections. For each model we report timing, memory
footprint, and time and memory ratio (Ours/libigl). Times are in seconds,
memory occupancy in Megabytes.

ID Int. Timing Memory Ratio
Ours libigl Ours libigl time mem

252784 2,074,680 104.66 1,162.34 2,471.65 10,654.76 9.00% 23.20%
101633 1,712,644 868.46 1,378.00 1,947.55 6,408.16 63.02% 30.39%
55928 1,160,227 87.67 764.80 1,092.00 4,398.07 11.46% 24.83%
1368052 1,034,695 120.08 916.09 4,395.86 9,112.31 13.11% 48.24%
498461 463,958 18.68 157.37 568.86 2,266.13 11.87% 25.10%
338910 434,923 7.74 186.62 528.58 2,109.12 4.15% 25.06%
252785 403,159 24.25 219.81 519.88 1,932.96 11.03% 26.90%
498460 352,430 12.02 130.41 504.64 1,768.93 9.22% 28.53%
242236 239,831 49.96 206.31 1,137.13 1,466.49 24.22% 77.54%
242237 239,644 49.11 201.83 1,129.47 1,470.90 24.33% 76.79%

memory footprint and running times, broadening the use of these
constructions on bigger and more complex datasets that were pre-
viously out of reach due to limits in the hardware resources or
computational time.

Mesh booleans. Computing boolean operations between 3D shapes
explicitly represented by a triangle mesh is useful in a variety of
applications, including CSG, fabrication and design [Garg et al. 2016;
Muntoni et al. 2018; Yao et al. 2017]. Given two watertight triangle
meshes A,B, computing a boolean between them amounts to: (i)
resolve all their intersections; (ii) determine what triangles of A are
located inside B, and vice-versa; (iii) filter the triangles depending
on the boolean of choice (e.g., A ∪ B is the set of all triangles of A
that are external to B, plus all the triangles of B that are external to
A). We implemented a simple boolean kernel that resolves (i) with

our algorithm, and uses winding numbers for (ii). Note that since
our input is a generic triangle soup, the algorithm naturally allows
variadic boolean operations that simultaneously involve an arbi-
trary number of meshes [Zhou et al. 2016]. Furthermore, substituing
classical winding numbers with their generalized version [Jacobson
et al. 2013], also booleans between meshes that do not unambigu-
ously enclose a solid are possible. Figure 14 shows various results
obtained with our tool. In this simple example, our detection and
solution of self-intersections required 0.23 seconds (the same task
with libigl took 2.04 seconds).

Sweeping, Minkowski Sums. Providing an explicit representation
of the volume occupied by an object being swept along a guiding
path or surface is of interest in various fields of computer graphics
and engineering, such as CNC machining, path planning, and colli-
sion detection, to name a few. In particular, the translational sweep-
ing of a shape (structural element) on another is called Minkowski
sum, whereas the translational and optionally rotational sweeping
along a given path is simply called sweeping. In both cases, it is
relatively easy to generate a superset of the boundary of the swept
volume by replicating each mesh element and extruding it along
the wanted direction, but the complexity of the so generated mesh
and the amount of intersections it contains makes the generation of
a clean boundary representation extremely hard. To demonstrate
the capabilities of our algorithm we implemented a tool to per-
form Minkowski sums. We naively replicate each mesh element,
filtering out part of the intersections as described in [Campen and
Kobbelt 2010b], and resolving the remaining ones with our tool. We
eventually extract the boundary using generalized winding num-
bers [Jacobson et al. 2013]. A result obtained with this pipeline
is depicted in Figure 15, where our arrangement step takes 0.81
seconds, as opposed to the 2.37 seconds of libigl.

Tetrahedralization. Generating a volumetric mesh from a given
boundary representation is a common need in applied sciences
(e.g. to solve PDEs). The majority of the tools that generate a tetra-
hedralization of a given piece-wise linear complex (PLC) do not
handle imperfections such as self-intersections or degenerate ele-
ments, which must be resolved in pre-processing [Si 2015]. Despite
some recent tools have proven robust against imperfect inputs [Hu
et al. 2018], these methods do not guarantee conformity w.r.t. the
input complex, and may therefore completely miss semantic fea-
tures that were incorporated in the elements of the PLC (Figure 13).
Our method allows to resolve all possible intersections, generating
a refined PLC which can be turned into a tetrahedral mesh that
precisely conforms to all the input features, both geometric and se-
mantic. In our current implementation we support only PLCs made
of triangles. General poygonal facets could be trivially incorporated
by triangulating them in pre-processing. Considering also isolated
points and lines would require an extension of our algorithm to
this class of inputs, which we plan to release in the near future.
With our current implementation we spent 0.36 seconds to resolve
intersections. The same step with libigl took 2.13 seconds.

Intersection detection. In certain situations it may be necessary
just to check that a geometry is free of intersection, before even
proceeding further with any computation. To this end, the first step

• Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco Attene

Fig. 13. Top: two copies of the ghost compenetrate to one another, generat-
ing a non valid PLC that cannot be turned into a tetrahedral mesh with tools
like Tetgen [Si 2015]. Middle: recent methods for robust tetrahedralization
allow to sidestep the resolution of intersections [Hu et al. 2018], but the
result is non conforming and color features are lost (closeup). Bottom: resolv-
ing intersections with our method produces a valid PLC, which can then be
successfully turned into a tetrahedral mesh, also preserving the boundaries
of color features. Meshes of this kind are useful e.g. in fabrication, to design
single colored assemblable components [Araújo et al. 2019].

of our pipeline offers an efficient yet exact tool to verify that a mesh
does not self-intersect. We tested the remaining 5335 models in
Thingi10k [Zhou and Jacobson 2016] not involved in the previous
experiments, and we verified that they are intersection free. Pro-
cessing all these models with the serial code required 12 minutes of
computation. The parallel code took 9 minutes to complete. Since
all these tests involve only the explicit coordinates of the input
points, standard orientation predicates could be used. Therefore,
using our tool or any previous tool for the computation of a mesh
arrangement is equivalent.

7 CONCLUSIONS
We presented a novel algorithm for the robust and efficient com-
putation of mesh arrangements. Previous methods had to sacrifice

either robustness or performances, choosing to represent intersec-
tion points exactly (facing a major slowdown) or approximately
(facing failures). Our method does not compromise, and is able to
fully address both requirements thanks to a smart exploitation of the
floating point hardware. Our major contribution is an implicit rep-
resentation of intersection points, coupled with a set of exact predi-
cates which allow to query them on a set of fundamental geometric
tests. We demonstrated the capabilities of our method on a rich yet
challenging dataset, showing that even a single threaded implemen-
tation of our algorithm outperforms a parallel implementation of the
most efficient prior methods. To this end, we believe this work con-
stitutes an important step forward in the field. To grant maximum
adoption of our techniques and full reproducibility, we release both
our predicates and mesh arrangement code to the public domain at
github.com/gcherchi/FastAndRobustMeshArrangements.git.

7.1 Future works
We foresee a number of extensions for this work. First and foremost,
we identify in the last step of the pipeline the weak ring of the
chain. Indeed, when an implicit point is converted to a float, a
possible numerical error may still produce locally flipped triangles.
We observe that this limitation is common to all methods that do
not represent intersection points directly with floats (i.e. all robust
methods). Despite recent literature has proposed solutions to this
problem [Devillers et al. 2018; Milenkovic and Sacks 2019], the
complexity of the current algorithms is such that these methods
are not usable in practice. More efficient algorithms need to be
developed to secure end to end black box geometry processing
with guarantees. Minor improvements to our technique regard: (i)
the extension of our input data to a generic PLC containing also
points, segments, and planar polygons; (ii) a constrained Delaunay
triangulation of refined triangles, which would require an additional
incircle predicate. Triangles are currently tessellated using trivial
earcut, andmay therefore be arbitrarily badly shaped. To this end, we
conjecture that besides improving elements’ quality, a CDTmay also
reduce the number of triangles intersecting a segment constraint,
possibly further reducing our running times. Finally, we plan to
further improve the parallel version of our code. We currently use
simple OMP directives to parallelize intersection queries and triangle
refinement. Despite less interesting from an academic point of view,
we believe there is plenty of room for improvement, and a careful
re-engineering of our code could greatly impact the performances
of the algorithm.

ACKNOWLEDGMENTS
Gianmarco Cherchi gratefully acknowledges the support to his re-
search by PONR&I 2014-2020AIM1895943-1 (http://www.ponricerca.
gov.it).

REFERENCES
Chrystiano Araújo, Daniela Cabiddu, Marco Attene, Marco Livesu, Nicholas Vining, and

Alla Sheffer. 2019. Surface2Volume: Surface Segmentation Conforming Assemblable
Volumetric Partition. ACM Transaction on Graphics 38, 4 (2019). https://doi.org/10.
1145/3306346.3323004

Marco Attene. 2010. A lightweight approach to repair polygon meshes. The Visual
Computer (2010), 1393–1406.

https://github.com/gcherchi/FastAndRobustMeshArrangements.git
http://www.ponricerca.gov.it
http://www.ponricerca.gov.it
https://doi.org/10.1145/3306346.3323004
https://doi.org/10.1145/3306346.3323004

Fast and Robust Mesh Arrangements using Floating-point Arithmetic •

Fig. 14. Boolean operations between two watertight 3D meshes, obtained by first computing a mesh arrangement with our algorithm and then filtering
triangles based on the winding number of their barycenter.

Fig. 15. Minkowski sum of the cow, obtainedwith a cubic structural element.

Marco Attene. 2014. Direct repair of self-intersecting meshes. Graphical Models 76, 6
(2014), 658–668.

Marco Attene. 2017. ImatiSTL - Fast and Reliable Mesh Processing with a Hybrid Kernel.
LNCS Transactions on Computational Science XXIX (2017), 86–96.

Marco Attene. 2018. As-exact-as-possible repair of unprintable STL files. Rapid Proto-
typing Journal (2018).

Marco Attene. 2020. Indirect predicates for Geometric Constructions. Computer-Aided
Design (2020). https://doi.org/10.1016/j.cad.2020.102856

Marco Attene, Marcel Campen, and Leif Kobbelt. 2013. Polygon mesh repairing: An
application perspective. ACM Computing Surveys (CSUR) 45, 2 (2013), 15.

Hichem Barki, Gael Guennebaud, and Sebti Foufou. 2015. Exact, robust, and efficient
regularized Booleans on general 3D meshes. Computers & Mathematics with Appli-
cations 70, 6 (2015), 1235–1254.

Gilbert Bernstein and Don Fussell. 2009. Fast, Exact, Linear Booleans. In Proceedings of
the Symposium on Geometry Processing (SGP ’09). Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, 1269–1278. http://dl.acm.org/citation.cfm?id=
1735603.1735606

Stephan Bischoff and Leif Kobbelt. 2005. Structure Preserving CAD Model Repair.
Computer Graphics Forum 24, 3 (2005), 527–536. https://doi.org/10.1111/j.1467-8659.
2005.00878.x arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
8659.2005.00878.x

Hervé Brönnimann, Christoph Burnikel, and Sylvain Pion. 1998. Interval Arithmetic
Yields Efficient Dynamic Filters for Computational Geometry. In Proceedings of the
Fourteenth Annual Symposium on Computational Geometry (SCG ’98). ACM, New
York, NY, USA, 165–174. https://doi.org/10.1145/276884.276903

Marcel Campen and Leif Kobbelt. 2010a. Exact and Robust (Self-
)Intersections for Polygonal Meshes. Computer Graphics Forum 29,
2 (2010), 397–406. https://doi.org/10.1111/j.1467-8659.2009.01609.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01609.x

Marcel Campen and Leif Kobbelt. 2010b. Polygonal Boundary Evaluation
of Minkowski Sums and Swept Volumes. Computer Graphics Forum
29, 5 (2010), 1613–1622. https://doi.org/10.1111/j.1467-8659.2010.01770.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2010.01770.x

Salles Viana Gomes de Magalhães, W Randolph Franklin, and Marcus Vinícius Alvim
Andrade. 2020. An Efficient and Exact Parallel Algorithm for Intersecting Large
3-D Triangular Meshes Using Arithmetic Filters. Computer-Aided Design 120 (2020),
102801.

Olivier Devillers, Sylvain Lazard, and William J. Lenhart. 2018. 3D Snap Rounding.
In 34th International Symposium on Computational Geometry (SoCG 2018) (Leibniz
International Proceedings in Informatics (LIPIcs)), Bettina Speckmann and Csaba D.
Tóth (Eds.), Vol. 99. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,

Germany, 30:1–30:14. https://doi.org/10.4230/LIPIcs.SoCG.2018.30
Olivier Devillers and Sylvain Pion. 2003. Efficient exact geometric predicates for

Delaunay triangulations. In Procs. of 5th Workshop Algorithm Eng. Exper. 37–44.
Steven Fortune and Christopher J. Van Wyk. 1993. Efficient Exact Arithmetic for

Computational Geometry. In Proceedings of the Ninth Annual Symposium on Com-
putational Geometry (SCG ’93). ACM, New York, NY, USA, 163–172. https:
//doi.org/10.1145/160985.161015

Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zim-
mermann. 2007. MPFR: A Multiple-precision Binary Floating-point Library with
Correct Rounding. ACM Trans. Math. Softw. 33, 2, Article 13 (June 2007). https:
//doi.org/10.1145/1236463.1236468

Akash Garg, Alec Jacobson, and Eitan Grinspun. 2016. Computational design of recon-
figurables. ACM Trans. Graph. 35, 4 (2016), 90–1.

Philippe Guigue and Olivier Devillers. 2003. Fast and robust triangle-triangle overlap
test using orientation predicates. Journal of graphics tools 8, 1 (2003), 25–32.

Peter Hachenberger. 2009. Exact Minkowksi Sums of Polyhedra and Exact and Efficient
Decomposition of Polyhedra into Convex Pieces. Algorithmica 55, 2 (01 Oct 2009),
329–345. https://doi.org/10.1007/s00453-008-9219-6

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2019. Fast
Tetrahedral Meshing in the Wild. arXiv preprint arXiv:1908.03581 (2019).

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral meshing in the wild. ACM Trans. Graph. 37, 4 (2018), 60–1.

Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust inside-outside
segmentation using generalized winding numbers. ACM Transactions on Graphics
(TOG) 32, 4 (2013), 1–12.

Wonhyung Jung, Hayong Shin, and Byoung Kyu Choi. 2003. Self-intersection Removal
in Triangular Mesh Offsetting.

Bruno Lévy. 2016. Robustness and efficiency of geometric programs: The Predicate
Construction Kit (PCK). Computer-Aided Design 72 (2016), 3–12.

C. Li, S. Pion, and C.K. Yap. 2005. Recent progress in exact geometric computation.
The Journal of Logic and Algebraic Programming 64, 1 (2005), 85 – 111. https:
//doi.org/10.1016/j.jlap.2004.07.006 Practical development of exact real number
computation.

Marco Livesu. 2019. cinolib: a generic programming header only C++ library
for processing polygonal and polyhedral meshes. Transactions on Compu-
tational Science XXXIV (2019). https://doi.org/10.1007/978-3-662-59958-7_4
https://github.com/mlivesu/cinolib/.

Andreas Meyer and Sylvain Pion. 2008. FPG: A code generator for fast and certified
geometric predicates. In Real Numbers and Computers. 47–60.

Victor Milenkovic and Elisha Sacks. 2019. Geometric rounding and feature separation
in meshes. Computer-Aided Design 108 (2019), 12–18.

Alessandro Muntoni, Marco Livesu, Riccardo Scateni, Alla Sheffer, and Daniele Panozzo.
2018. Axis-aligned height-field block decomposition of 3d shapes. ACM Transactions
on Graphics (TOG) 37, 5 (2018), 1–15.

Daniele Panozzo and Alec Jacobson. 2014. LIBIGL: A C++ library for geometry processing
without a mesh data structure. SGP 2014 Graduate School.

Sylvain Pion and Andreas Fabri. 2011. A generic lazy evaluation scheme for exact
geometric computations. Science of Computer Programming 76, 4 (2011), 307 – 323.
https://doi.org/10.1016/j.scico.2010.09.003 Special issue on library-centric software
design (LCSD 2006).

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo Geometry Processing: A Grid-
Free Approach to PDE-Based Methods on Volumetric Domains. ACM Trans. Graph.
39, 4, Article 123 (July 2020), 18 pages. https://doi.org/10.1145/3386569.3392374

Silvia Sellán, Herng Yi Cheng, Yuming Ma, Mitchell Dembowski, and Alec Jacobson.
2019. Solid Geometry Processing on Deconstructed Domains. In Computer Graphics
Forum, Vol. 38. Wiley Online Library, 564–579.

Jonathan Richard Shewchuk. 1997. Adaptive precision floating-point arithmetic and
fast robust geometric predicates. Discrete & Computational Geometry 18, 3 (1997),
305–363.

Jonathan Richard Shewchuk and Brielin C Brown. 2015. Fast segment insertion and
incremental construction of constrained Delaunay triangulations. Computational
Geometry 48, 8 (2015), 554–574.

https://doi.org/10.1016/j.cad.2020.102856
http://dl.acm.org/citation.cfm?id=1735603.1735606
http://dl.acm.org/citation.cfm?id=1735603.1735606
https://doi.org/10.1111/j.1467-8659.2005.00878.x
https://doi.org/10.1111/j.1467-8659.2005.00878.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2005.00878.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2005.00878.x
https://doi.org/10.1145/276884.276903
https://doi.org/10.1111/j.1467-8659.2009.01609.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01609.x
https://doi.org/10.1111/j.1467-8659.2010.01770.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2010.01770.x
https://doi.org/10.4230/LIPIcs.SoCG.2018.30
https://doi.org/10.1145/160985.161015
https://doi.org/10.1145/160985.161015
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1007/s00453-008-9219-6
https://doi.org/10.1016/j.jlap.2004.07.006
https://doi.org/10.1016/j.jlap.2004.07.006
https://doi.org/10.1007/978-3-662-59958-7_4
https://doi.org/10.1016/j.scico.2010.09.003
https://doi.org/10.1145/3386569.3392374

• Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco Attene

Hang Si. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM
Transactions on Mathematical Software (TOMS) 41, 2 (2015), 1–36.

K. Sugihara and M. Iri. 1990. A Solid Modelling System Free from Topological Inconsis-
tency. J. Inf. Process. 12, 4 (April 1990), 380–393. https://doi.org/10.5555/81617.81622

The CGAL Project. 2019. CGAL User and Reference Manual (4.14.1 ed.). CGAL Editorial
Board. https://doc.cgal.org/4.14.1/Manual/packages.html

Bolun Wang, Teseo Schneider, Yixin Hu, Marco Attene, and Daniele Panozzo. 2020.
Exact and Efficient Polyhedral Envelope Containment Check. ACM Trans. Graph.
39, 4, Article 114 (July 2020), 14 pages. https://doi.org/10.1145/3386569.3392426

Jiaxian Yao, Danny M Kaufman, Yotam Gingold, and Maneesh Agrawala. 2017. In-
teractive design and stability analysis of decorative joinery for furniture. ACM
Transactions on Graphics (TOG) 36, 2 (2017), 1–16.

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh arrange-
ments for solid geometry. ACM Transactions on Graphics (TOG) 35, 4 (2016), 39.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10k: A dataset of 10,000 3d-printing
models. arXiv preprint arXiv:1605.04797 (2016).

A ORIENT2D_XY
The expression for all the versions of the orient2d_XY predicate
are reported in this appendix. Note that the YZ and ZX versions can
be obtained by simply replacing all the subscripts accordingly. All
the semi-static filters were calculated using [Attene 2020].

orient2d_XY_EEE(p1, p2, p3) = siдn(∆)

∆ = (p2x − p1x)(p3y − p1y) − (p2y − p1y)(p3x − p1x)

ε∆ = 8.881784197001252 10−16δ 2
∆

δ∆ = max{ |p2x − p1x |, |p3y − p1y |, |p2y − p1y |, |p3x − p1x | }

orient2d_XY_LEE(pL , p2, p3) = siдn(∆)siдn(dL)

∆ = dL (p2xp3y − p2yp3x) + λLx (p2y − p3y) + λLy (p3x − p2x)

ε∆ = 4.75277369543781 10−14δ 5
∆

δ∆ = max{ |δL |, |p2x |, |p2y |, |p3x |, |p3y |, |p2y − p3y |, |p3x − p2x | }

orient2d_XY_LLE(pL1, pL2, p3) = siдn(∆)siдn(dL2)

∆ = (dL1λL2x − dL2λL1x)(dL1p3y − λL1y)−

(dL1λL2y − dL2λL1y)(dL1p3x − λL1x)

ε∆ = 1.699690735379461 10−11δ 11
∆

δ∆ = max{ |δL1 |, |δL2 |, |p3x |, |p3y | }

orient2d_XY_LLL(pL1, pL2, pL3) = siдn(∆)siдn(dL2)siдn(dL3)

∆ = (dL1λL2x − dL2λL1x)(dL1λL3y − dL3λL1y)−

(dL1λL2y − dL2λL1y)(dL1λL3x − dL3λ1x)

ε∆ = 1.75634284893534 10−10δ 14
∆

δ∆ = max{ |δL1 |, |δL2 |, |δL3 | }

orient2d_XY_LLT(pL1, pL2, pT) = siдn(∆)siдn(dL2)siдn(dT)

∆ = (dL1λL2x − dL2λL1x)(dL1λTy − dT λL1y)−

(dL1λL2y − dL2λL1y)(dL1λTx − dT λL1x)

ε∆ = 2.144556754402072 10−9δ 17
∆

δ∆ = max{ |δL1 |, |δL2 |, |δT |, | | }

orient2d_XY_LTE(pL , pT , p3) = siдn(∆)siдn(dT)

∆ = (dLλTx − dT λLx)(dLp3y − λLy)−

(dLλTy − dT λLy)(dLp3x − λLx)

ε∆ = 2.184958117212875 10−10δ 14
∆

δ∆ = max{ |δL |, |δT |, |p3x |, |p3y | }

orient2d_XY_LTT(pL , pT 1, pT 2) = siдn(∆)siдn(dT 1)siдn(dT 2)

∆ = (dLλT 1x − dT 1λLx)(dLλT 2y − dT 2λLy)−

(dLλT 1y − dT 1λLy)(dLλT 2x − dT 2λLx)

ε∆ = 2.535681042914479 10−8δ 20
∆

δ∆ = max{ |δL |, |δT 1 |, |δT 2 | }

orient2d_XY_TEE(pT , p2, p3) = siдn(∆)siдn(dT)

∆ = dT (p2xp3y − p2yp3x) + λTx (p2y − p3y) + λTy (p3x − p2x)

ε∆ = 9.061883188277186 10−13δ 8
∆

δ∆ = max{ |δT |, |p2x |, |p2y |, |p3x |, |p3y |, |p2y − p3y |, |p3x − p2x | }

orient2d_XY_TTE(pT 1, pT 2, p3) = siдn(∆)siдn(dT 2)

∆ = (dT 1λT 2x − dT 2λT 1x)(dT 1p3y − λT 1y)−

(dT 1λT 2y − dT 2λT 1y)(dT 1p3x − λT 1x)

ε∆ = 3.307187945722513 10−8δ 20
∆

δ∆ = max{ |δT 1 |, |δT 2 |, |p3x |, |p3y | }

orient2d_XY_TTT(pT 1, pT 2, pT 3) = siдn(∆)siдn(dT 2)siдn(dT 3)

∆ = (dT 1λT 2x − dT 2λT 1x)(dT 1λT 3y − dT 3λT 1y)−

(dT 1λT 2y − dT 2λT 1y)(dT 1λT 3x − dT 3λT 1x)

ε∆ = 3.103174776697444 10−6δ 26
∆

δ∆ = max{ |δT 1 |, |δT 2 |, |δT 3 | }

B POINTCOMPARE_ON_X
The expression for all the versions of the pointCompare_on_X pred-
icate are reported in this appendix. pointCompare_on_X_EE can
be implemented without any explicit subtraction, and hence with-
out the need for a filter. The Y and Z versions can be obtained by
replacing the subscripts accordingly.
pointCompare_on_X_LE(pL , p2) = siдn(∆)siдn(dL)

∆ = λLx − p2xdL

ε∆ = 1.932297637868842 10−14δ 4
∆

δ∆ = max{ |δL |, |p2x | }

pointCompare_on_X_LL(pL1, pL2) = siдn(∆)siдn(dL1)siдn(dL2)

∆ = dL2 ∗ λL1x − dL1 ∗ λL2x

ε∆ = 2.92288762637760 10−13δ 7
∆

δ∆ = max{ |δL1 |, |δL2 | }

pointCompare_on_X_LT(pL , pT) = siдn(∆)siдn(dL)siдn(dT)

∆ = dT ∗ λLx − dL ∗ λTx

ε∆ = 4.321380059346694 10−12δ 10
∆

δ∆ = max{ |δL |, |δT | }

pointCompare_on_X_TE(pT , p2) = siдn(∆)siдn(dT)

∆ = λTx − p2xdT

ε∆ = 3.980270973924514 10−13δ 7
∆

δ∆ = max{ |δT |, |p2x | }

pointCompare_on_X_LL(pT 1, pT 2) = siдn(∆)siдn(dT 1)siдn(dT 2)

∆ = dT 2 ∗ λT 1x − dT 1 ∗ λT 2x

ε∆ = 5.504141586953918 10−11δ 13
∆

δ∆ = max{ |δT 1 |, |δT 2 | }

https://doi.org/10.5555/81617.81622
https://doc.cgal.org/4.14.1/Manual/packages.html
https://doi.org/10.1145/3386569.3392426

	Abstract
	1 Introduction
	2 Related works
	2.1 Mesh Arrangements
	2.2 Applications
	2.3 Numerical Approaches

	3 Problem statement and positioning
	4 Representation and processing of implicit intersection points
	4.1 Point representation
	4.2 Point orientation
	4.3 Point sorting

	5 Mesh Arrangements
	5.1 Intersections: localization and assessment
	5.2 Adding intersection points
	5.3 Adding intersection segments
	5.4 Coplanar triangles
	5.5 Explicit arrangements
	5.6 Conversion to explicit coordinates

	6 Results and Applications
	6.1 Applications

	7 Conclusions
	7.1 Future works

	Acknowledgments
	References
	A orient2d_XY
	B PointCompare_on_X

