

Generalized Adaptive Refinement for Grid-based Hexahedral Meshing

L. Pitzalis^{1,2}, M. Livesu³, G. Cherchi¹, E. Gobbetti², R. Scateni¹

- ¹ University of Cagliari, Italy
- ² CRS4, Italy
- ³ CNR-IMATI, Italy

Generalized Adaptive Refinement for Grid-based Hexahedral Meshing

start from an input surface

fit the input surface on its AABB

refine the AABB according to a metric

Organized by

discard useless hexaedra and project the grid on the target surface

14 - 17 December 2021

a non-conforming mesh with hanging nodes is obtained

a non-conforming mesh with hanging nodes is obtained

goal: remove hanging nodes!

dualization is required!

mission complete: conforming hexmesh

Balancing:

the difference in the amount of refinement between adjacent cells cannot be greater than 1

Organized by

sa2021.siggraph.org

Balancing:

the difference in the amount of refinement between adjacent cells cannot be greater than 1

Pairing:

hanging nodes must be taken in pairs to be removed

State of the art

[Maréchal 2009]

[Gao et al. 2019]

[Livesu et al. 2021]

tree pairing

grid pairing

NO tree pairing

Tree pairing vs NO our pairing

Num cells 25→52

too much over-refinement

State-of-the-art tree pairing

Num cells 25→28

less over-refinement!

our pairing

Contributions

Refinement on vertices

- Guarantee the pairing condition through an ILP
 - Linear objective function
 - All linear constraints
- Get rid of the tree structure constraints for balancing and pairing

binary grid

0	0	0	0	0
0	0	1	0	0
0	1	1	1	0
0	1	1	1	0
0	0	0	0	0

every refined cell must fit into a non-overlapping 2x2 mask

0	0	0	0	0
0	0	1	0	0
0	1	1	1	0
0	1	1	1	0
0	0	0	0	0

every refined cell must fit into a non-overlapping 2x2 mask

0	0	0	0	0
0	0	1	0	0
0	1	1	1	0
0	1	1	1	0
0	0	0	0	0

every refined cell must fit into a non-overlapping 2x2 mask

0	0	0	0	0
0	0	1	0	0
0	1	1	1	1
0	1	1	1	1
0	0	0	0	0

cells touching the center of the mask are refined

0	1	1	0	0
0	1	1	0	0
0	1	1	1	1
0	1	1	1	1
0	0	0	0	0

$$\min_{r(v)} E = \sum_{c \in G} \left(\sum_{v \in c} r(v) - r(c) \right)$$

minimize the number of refined cells

Organized by

s.t.

$$\forall c \in G, \quad \sum_{v \in c} r(v) \ge r(c)$$
 $\forall ij \in N_P \quad r(v_i) + r(v_j) \le 1$

$$\forall ij \in N_P \quad r(v_i) + r(v_j) \le 1$$

$$\min_{r(v)} E = \sum_{c \in G} \left(\sum_{v \in c} r(v) - r(c) \right)$$

s.t

$$\forall c \in G, \quad \sum_{v \in c} r(v) \ge r(c)$$

$$\forall ij \in N_P \quad r(v_i) + r(v_j) \le 1$$

the refinement assigned to a cell must always be lesser or equal to the refinement assigned to its vertices

$$\min_{r(v)} E = \sum_{c \in G} \left(\sum_{v \in c} r(v) - r(c) \right)$$

$$\forall c \in G, \quad \sum_{v \in c} r(v) \ge r(c)$$
 $\forall ij \in N_P \quad r(v_i) + r(v_j) \le 1$

$$\forall ij \in N_P \quad r(v_i) + r(v_i) \leq 1$$

two vertices whose minors overlap cannot be both refined

2x2x2 minors can't overlap → pairing guarantee

$$\min_{r(v)} E = \sum_{c \in G} \left(\sum_{v \in c} r(v) - r(c) \right)$$

$$\forall c \in G, \quad \sum_{v \in c} r(v) \ge r(c)$$
 $\forall ij \in N_P \quad r(v_i) + r(v_j) \le 1$

$$\forall ij \in N_P \quad r(v_i) + r(v_i) \le 1$$

More than half the grid size if compared to [Gao et al. 2019]

[Gao et al. 2019] method relative growth

~ half the grid size if compared to [Livesu et al. 2021]!

[Livesu et al. 2021] method relative growth

Results |

nose of Max Planck model collapsed on a face

details are completely lost

nose of Max Planck model collapsed on a face

some details are preserved but at the cost of an excessive refinement

nose of Max Planck model collapsed on a face

details are preserved

fingers collapsed on a face

adaptive grid

not restricted to cube shapes

Conclusion

14 - 17 December 2021

Future Works

Input paired grid

14 - 17 December 2021

Our output

Code and Demo are available!

https://github.com/cg3hci/Gen-Adapt-Ref-for-Hexmeshing

14 - 17 December 2021

Optimal Dual Schemes for Adaptive Grid Based Hexmeshing

CONFERENCE 14 - 17 DECEMBER 2021 EXHIBITION 15 - 17 DECEMBER 2021 TOKYO INTERNATIONAL FORUM, JAPAN

sa2021.siggraph.org

Thanks for your attention

Presented by Luca Pitzalis

Sponsored by

acm

