
Defining Configurable Virtual Reality Templates for End
Users

VALENTINO ARTIZZU, Dept. of Mathematics and Computer Science, University of Cagliari, Italy
GIANMARCO CHERCHI, Dept. of Mathematics and Computer Science, University of Cagliari, Italy
DAVIDE FARA, Dept. of Mathematics and Computer Science, University of Cagliari, Italy
VITTORIA FRAU, Dept. of Mathematics and Computer Science, University of Cagliari, Italy
RICCARDO MACIS, Dept. of Mathematics and Computer Science, University of Cagliari, Italy
LUCA PITZALIS, Dept. of Mathematics and Computer Science, University of Cagliari, Italy
ALESSANDRO TOLA, Dept. of Mathematics and Computer Science, University of Cagliari, Italy
IVAN BLEČIĆ, Dept. of Civil Engineering and Architecture, University of Cagliari, Italy
LUCIO DAVIDE SPANO, Dept. of Mathematics and Computer Science, University of Cagliari, Italy

This paper proposes a solution for supporting end users in configuring Virtual Reality environments by
exploiting reusable templates created by experts. We identify the roles participating in the environment
development and the means for delegating part of the behaviour definition to the end users. We focus in
particular on enabling end users to define the environment behaviour. The solution exploits a taxonomy
defining common virtual objects having high-level actions for specifying event-condition-action rules readable
as natural language sentences. End users exploit such actions to define the environment behaviour. We report
on a proof-of-concept implementation of the proposed approach, on its validation through two different case
studies (virtual shop and museum), and on evaluating the approach with expert users.

CCS Concepts: • Human-centered computing→ Virtual reality; User interface programming; User
interface toolkits.

Additional Key Words and Phrases: virtual reality, end-user development, configuration, toolkit, natural
language, meta-design, rules, event-condition-action

Authors’ addresses: Valentino Artizzu, Dept. of Mathematics and Computer Science, University of Cagliari, Via Ospedale 72,
Cagliari, Italy, 09124; Gianmarco Cherchi, Dept. of Mathematics and Computer Science, University of Cagliari, Via Ospedale
72, Cagliari, Italy, 09124; Davide Fara, Dept. of Mathematics and Computer Science, University of Cagliari, Via Ospedale 72,
Cagliari, Italy, 09124; Vittoria Frau, Dept. of Mathematics and Computer Science, University of Cagliari, Via Ospedale 72,
Cagliari, Italy, 09124; Riccardo Macis, Dept. of Mathematics and Computer Science, University of Cagliari, Via Ospedale 72,
Cagliari, Italy, 09124; Luca Pitzalis, Dept. of Mathematics and Computer Science, University of Cagliari, Via Ospedale 72,
Cagliari, Italy, 09124; Alessandro Tola, Dept. of Mathematics and Computer Science, University of Cagliari, Via Ospedale
72, Cagliari, Italy, 09124; Ivan Blečić, Dept. of Civil Engineering and Architecture, University of Cagliari, Via Marengo 2,
Cagliari, Italy, 09123; Lucio Davide Spano, davide.spano@unica.it, Dept. of Mathematics and Computer Science, University
of Cagliari, Via Ospedale 72, Cagliari, Italy, 09124.

Valentino Artizzu, et al.

1 INTRODUCTION
In the past few years, there has been an increase in the availability of consumer Virtual Reality
(VR) devices, such as the Oculus Rift, Quest, Steam VR, etc. They provide immersive and engaging
experiences, developed mainly for gaming entertainment. The maturity of these devices opened
the path to a growing number of applications in different sectors, such as healthcare, aerospace,
automotive, retail, and manufacturing. The VR impact on such markets is expected to grow in the
near future, reaching the volume of 84.09 Billion US dollars by 2028 [46]. As happened in other
fields such as the Internet of Things (IoT) or the publication of web content, the variegated needs
of particular users or niches will push for opening the authoring of VR content to end users. We
expect such a scenario when the user’s needs change over time, which applies to VR content. For
instance, we may use a VR environment for training people in performing potentially dangerous
tasks (e.g., sanitize and environment), but the procedure requirements may change over time (e.g.,
new measures to counter the spread of Covid-19 pandemics). Currently, such modifications would
require the intervention of a professional developer, which could not always be feasible.

However, opening VR content authoring to end users is still a tough challenge, even using limited
and simplified approaches. Shifting the entire building process towards end users is not entirely
feasible because building VR experiences requires different skills and involves a team including 3D
modelling experts, developers, game designers, etc. In addition, they create environments closed
to changes: we need a develop-build-distribute cycle to modify their behaviour. Currently, it is
possible to configure an environment through scene builders or inspectors, which allow placing and
orienting 3D models that constitute the virtual world in both immersive or desktop mode. We can
find different solutions for this task, both in the literature and in commercial products [21, 47, 48].
The most challenging part is still the definition of the dynamic behaviour of an environment, i.e.,
responding to the interaction with a user or other objects. The tools supporting the articulation of
dynamic behaviours are too complex for end users. They target people skilled in game engines
such as Unity3D (e.g., Fungus [16]), or limit their support to animations (e.g., Ottifox [38]).
In this paper, we propose an End-User Development approach [29] for supporting the config-

uration of a VR environment by users without skills in programming and/or 3D modelling. The
approach includes three roles inspired by meta-design [2, 11, 15], collaborating for transforming
the template of a VR environment created by an expert into a peculiar VR experience configured
by an end user. In particular, we detail the engineering of a solution dedicated to expert users
for including configurable objects in a VR environment, whose behaviour is defined by end users
through Event-Condition-Action rules expressed in natural language. The solution is adaptable to
different VR engines. It supports i) the rule language specification, ii) the definition of configuration
points inside a VR environment, and iii) the execution of the rules at run-time, without requiring
further builds of the VR environment. We report on a proof-of-concept implementation of the
solution in Unity3D, the design of two sample templates (a virtual shop and a virtual museum), and
their configuration for supporting two different experiences each. Finally, we discuss the results of
a user study assessing the utility and the usability of the proof-of-concept in defining a template.

We organised the paper as follows. First, we discuss the related work on EUD approaches for VR,
and we summarise rules applications in EUD (Section 2). Then, we introduce the general concepts
and roles in the EUD approach, detailing the components of the proposed solution (Section 3).
After that, we describe a proof-of-concept implementation (Section 4), the development of two
sample templates and their configuration through rules (Section 5). Then, we report on the results
of a user study involving expert VR developers (Section 6), and we discuss the contributions and
the limitations in our approach (Section 7). Finally, we conclude the paper by tracing the path for
further research (Section 8).

2 RELATEDWORK
End-User Development (EUD) [29] approaches focus on supporting users without programming
skills in developing or adapting software applications. EUD can reduce the time and costs needed for
customization and increase software quality [39]. In general, the main advantage for users consists
in developing and adapting systems at a level of complexity that is adequate to their practices,
background, and skills [39]. On the other hand, professional software developers can rely on a
broader adoption, impact, and diffusion of their applications. In the following, we summarise the
techniques enabling end users to create VR environments and the relevant applications of rules in
EUD.

2.1 End-user definition of VR environments
Different commercial and research tools support end users in creating VR environments. Most of
these tools are limited to the definition of static scenes or multimedia content overlay. For instance,
Hubs by Mozilla [34] allows people to create shared rooms for VR communities and groups,
while also being able to modify their configuration through multimedia content and appearance
customisation. Its focus is on gathering people, so the environment’s behaviour is a second-class
concern. A specific tool for Hubs, called Spoke [35], supports the composition of 3D models for
setting up a static representation of a scene through user-friendly tools. It exploits well mature
techniques for end user VR modelling in a desktop setting. It contains tools for positioning, scaling,
and rotating 3D models, an extensive catalogue of 3D models ready to be included in the scene and
features for seamless result sharing on the web. Its main drawback is the lack of support for the
definition of behaviours beyond the animation, the need for build and test iterations and the long
time required for getting a good quality result.
The research literature focused for a long time on techniques for editing the VR environment

while the user is immersed in the virtual world. Steed et al. [41] proposed the first environment
targeting both the scene configuration and the behaviour definition in an immersive setting. It
used a dataflow paradigm and aimed at speeding up the development process by technical people.
Lee et al. [26, 27] evolved such a research thread defining the so-called “immersive authoring”,
where users created the scenes while immersed into them. Again, such an environment supported
the behaviour definition but targeted developers. Takala [42] introduced a toolkit for simplifying
the creation of VR, providing a set of building blocks that allows hobbyists and students to create
VR experiences rapidly. While the tool lowers the barrier for editing VR, users require technical
knowledge for assembling the building blocks through dedicated code. More recently, tools like
FlowMatic [50] evolved such ideas adapting to the newly available devices. It is an immersive
authoring tool that allows programmers to specify reactions to discrete events (e.g., user actions
and system timers). All these tools have a purpose similar to our project, but their goal is to increase
developers’ efficiency, reducing the build-test-fix cycle. EntangleVR [8] proposes an innovative
representation of the VR scene behaviour inspired by the entanglement phenomenon in quantum
physics. The approach is interesting since it lowers the barrier for modelling such a phenomenon,
but it also limits the definition of behaviour to a specific case.
We can also find VR tools designed explicitly for end-user development in the literature. For

instance, XOOM [18] is a tool designed for non-ICT-specialists to create web-based immersive
VR applications in the cultural heritage field. It contains a simplified behaviour model, defining
a restricted set of experiences. The approach we propose in this work raises the ceiling of the
possible interaction, also supporting the calibration of the behaviour definition on the domain
needs. VR GREP [47] is a tool dedicated to end users for the design and development of VR
applications. The tool runs in two different modes, one for authoring and one for running the

Valentino Artizzu, et al.

resulting VR environment. The authoring environment offers means for creating the navigation in
the environment, inserting and manipulating 3D objects. While it provides standard interaction
and manipulation techniques for statically defining the environment configuration, the support for
behaviour definition is limited to navigation and reaction to button clicks.

There are also attempts to build commercial tools for end-user development. Ottifox [38] is a tool
for creating generic VR environments. The tool supports an entirely visual development of the VR
environment, and it exploits a simplified version of rules we use in this paper, without support for
conditions and working only with animations. Other commercial or open-source tools offer support
for end-user storytelling or game development. Fungus [16] is an open-source visual storytelling
tool designed as a Unity3D extension. It allows creating visual novels through flowcharts, but the
visualization is demanding in terms of screen space, limiting the end user’s comprehension [22].

We can find examples of tools targeting specifically the end-user development of VR behaviour
in serious game literature. For instance, Manestrina et al. [32] discuss the definition of an actor
programming environment for creating and modifying the behaviour of non-playable characters in
serious games. The aim is to shift the changes in the game behaviour with the evolving needs of
the game. While we share some goals with this thread in the literature, we aim to cover a more
generic representation of VR environments.

Relevant behaviour definition techniques are also available in the literature targeting the editing
of interactive 360◦ videos. While we cannot consider them as full VR experiences, they share the
immersion and the need to define how to react to the user’s interactions. In this field, Blečić et
al. [5, 14] propose the solution closest to the one we present in this paper. They created an authoring
tool for designing point-and-click games limited to 360◦ videos, defining the behaviour through
rules. We share the same rule-based approach with this work, but we extend it to more complex
interactions in full VR environments. Torres et al. [43] propose a more limited tool, supporting
the editing of 360◦ videos by adding interactive content panels containing information, quizzes,
pictures, and 3D models. Mendes et al. [31] introduce a similar tool working in a different domain.
They support teachers and instructors in adding multimedia content for learning purposes. It shares
with the previous tool also the limitations in defining the behaviour. Adao et al. [1] introduce a more
complex behaviour modelling but is still limited in terms of generic VR interactions. It supports
both interaction and time-triggered reactions in the environment, controlling multimedia content
and spatial sound. A tool providing support to specific aspects of the experience is Culture4All [33].
It focuses on supporting the accessibility of VR content, providing a platform explicitly designed for
cultural heritage, allowing the content creator to use accessibility-related services while authoring
the VR content.

Another relevant field for our work is the support for creating VR prototypes. On the one hand,
such tools require simplifying the interaction definition and the environment modelling to support
rapid design and test cycles. On the other hand, they target specifically designers, who have a higher
knowledge of the VR environments’ structure than end users. Nebeling and Madier [37] support
design teams in creating rapid prototypes of both VR and AR. The fast-paced cycle of creating and
editing the sketches requires avoiding complex content editing and behaviour programming. The
solution proposed in the paper offers a smart combination of pictures and hand-drawn sketches,
together with “Wizard of Oz” simulations of the environment behaviour. In a follow-up work called
XRDirector [36], they expand the approach for supporting multiuser authoring using a filmmaking
metaphor that assigns different roles to the participants (director, actor, camera). While the result is
again focused on producing prototypes and is still a simulation of the object behaviour, it introduces
an interesting idea for supporting collaboration between end users in producing VR and AR content.
Tvori [44] is a VR and AR tool for prototyping environments and interfaces while being inside an
immersive environment and with the possibility to collaborate on the same project in real-time.

2.2 Rule-based approaches in End-User Development
Rule-based environment configurations for end users are widely adopted in research work. There
are various rule programming styles documented in the literature. One of the most adopted is the
Trigger-Action Programming (TAP), in particular in the Internet of Things (IoT) field, both at the
academic level [10, 13, 19] and in successful commercial tools [24, 45].
Trigger-Action programming addresses users without strong IT skills, so rules assume the

following simple pattern: “if <a trigger occurs>, then <an action is executed>”. The first part
describes the event that fires the rule, and the second specifies the action reacting to the trigger.
Events arise when an object in the environment changes its state (e.g., the light turns on) or there
is a change in the context (e.g., the temperature is below 21°). The action describes a command sent
to the same object that triggered the rule (e.g., turn the light off) or another device (e.g., close the
door). The rule’s action may trigger another rule, leading to a chaining effect. This is useful for
creating complex behaviours, but it can also cause unexpected effects [9].

Because of their simplified format, TA rules lend themselves well to wizard-style visual interfaces,
where the user can specify the desired trigger and action, resulting in the final rule. This metaphor
causes problems when the environment has many devices or, in general, when the complexity of
the ecosystem becomes high [3].

An interesting variant of Trigger Action rules includes an else block, which provides an alternative
set of actions to execute if the event is not satisfied. Coutaz and Crowley [12] proposed it in a EUD
environment designed to empower people with tools to control their home. Unfortunately, they
only provide a preliminary test in their home environment, so the variant requires further research.
Event-Condition-Action (ECA) rules add a third, intermediate part between the event and the

action part: a condition defining a guard preventing the rule from being executed if not verified.
This part usually checks the state of the environment (e.g., “if the light is on”, “if the timer elapsed
more than 3 seconds”), or other context-related information. ECA rules distinguish the trigger and
the condition by the adverb introducing the rule part: “when [something happens] if [condition]
then [action]”. Usually, such a format allows triggering more than one action in the then part. ECA
rules are more expressive than simple TA rules since they may associate different actions to the
same trigger event, and they support filtering through the condition part. The higher expressiveness
may also lead to the increased complexity of the behaviour definition, raising the barrier for end
users.
The study by Brackenbury et al. [6] shows that one of the most challenging issues for users

in adding the condition part to an ECA or TAP rule consists in understanding the difference
between events and conditions. One may exchange them in many situations, but sometimes there
are subtle differences in the semantics that are difficult to grasp for end users. Instead, an erroneous
understanding of the distinction between events and states could lead to inconsistencies, loops, and
redundancies [9]. The research also focused on supporting fixing or detecting bugs in rules through
model checking [7, 23, 28, 49]. Currently, the results are limited to enforcing different safety checks
(for instance, the fridge’s temperature should never exceed 5°C). The solution proposed in [3]
introduces a hybrid ECA-TAP approach, where users can introduce rules through both where and if
adverbs, depending on the result they want to achieve. However, some participants misunderstood
the difference among them, showing that we require more than changing the syntax for solving
this problem.
ECA rules support the configuration of the environment in different domains. For instance,

Barricelli and Valtolina [4] exploit them in an interactive visual system for the collaborative
management of IoT sensors for improving the quality of life and promoting wellness awareness.
Blečić et al. [5, 14] created an authoring tool for point-and-click games, whose logic is defined

Valentino Artizzu, et al.

through a set of ECA rules following a natural language representation. The environment supports
the editing through a set of drop-down lists, guiding the user in creating the rules.
We adopt the Event-Condition-Action rules format inside a VR environment in this work. The

guidelines in [39] support this choice: trigger-action paradigm is not enough for managing complex
scenarios and automation the end users need to define for configuring Virtual Reality environments.

3 AN END-USER DEVELOPMENT APPROACH FOR CONFIGURING VIRTUAL REALITY
ENVIRONMENTS

In order to define the workflow for supporting end users in creating their own VR experiences,
we applied the three levels identified in the meta-design approach [2, 11, 15] which envisions the
participation of end users in a hybrid role of designers and consumers of software artifacts. It defines
three hierarchical levels in the creation and evolution of the software, which exchange information
among them, exploiting different languages and tools at each level. At meta-design level, software
engineers, professional developers, or content creators define the core aspect of the software using
languages characterized by a high computational power (e.g., Turing Machine equivalent). End
users cannot manage such development tools, so we have the highest computational power at this
level but the lower usability. At the design level, domain experts participate in the design of software,
using languages having less computational power (e.g., permitting a limited set of operations),
which are usable by non-technical people. The use level includes the final users performing the
well-defined activities that the software must support. It basically exploits a domain-oriented
language with the lowest computational power but the highest usability for users.

Applying the principles of meta-design, requesting an end user to build an entire VR environment
is unfeasible. Instead, it is reasonable to apply a solution similar to Content Management Systems
for publishing web content: end users download website templates, working out of the box but
including dummy content. End users exploit specific languages and interactions for configuring it
for their purposes. Therefore, we expect end users to start from predefined VR environments to
configure and adapt them to their needs. In the proposed workflow, the environment prepared by
experts represents a solution adaptable to different settings by configuring its behaviour and adding
content in predefined points. They will not resemble a complete, final version of an interactive VR
environment, but rather a template, which end users can tailor to their needs. Therefore, the same
template may fit the need of many end users.

The main problem is defining the language at the design level for configuring such templates. As
already pointed out in Section 2.1, while we already have usable solutions for moving the content
around an existing VR environment, we do not have an equivalent for its behaviour. In this paper,
we propose to borrow the knowledge developed in the last years of research in rule-based EUD,
especially in the IoT domain (see Section 2.2). We use Event-Condition-Action (ECA) rules for
defining 3D objects’ behaviour in isolation and their interaction with other objects. The main
contribution of this paper is the definition of components enabling rule-based configuration and
the rule runtime support for VR.

In summary, our solution foresees three different roles:

• Template Builders (TB), which represents users with good skills in both 3D modelling and
game programming. We assume that they are proficient with game programming platforms
and can build complex VR environments. TBs create the templates, which are almost-complete
VR environments, open to end-user configurations. They represent the experts of the meta-
design level.

• End-User Developers (EUDevs), which represent users without skills in 3D modelling and
game programming, but having an average familiarity with computer use (e.g., proficient in

using standard office programs) and with VR environments (e.g., they played 3D videogames
or have VR experience as users). They represent people who may require creating VR content
for their business or leisure (e.g., touristic promotion, content advertisement, etc.). They
are supposed to have a limited budget for creating the content or, even if they have the
budget, they need to modify the content by themselves (e.g., they update the VR content
frequently). They download or buy templates to configure for getting the final version of the
VR environment. They represent the hybrid designer/consumer at the design level.

• Users, which represent the final consumer of the VR contents, either created by professionals
or by EUDevs. They represent the final user of the use level.

In Table 1, we introduce a sample configuration scenario for concretely explaining the concepts
in our approach. It partially covers one of the case studies outlined in Section 5. It will ease the un-
derstanding of the general solution in the current section and the proof-of-concept implementation
in Section 4.

We suppose having a template representing a virtual clothing shop, including products (e.g.,
t-shirts, hats, shoes etc.) and multimedia elements for displaying additional information (e.g.,
text panels, virtual monitors for videos etc.). The EUDev wants to configure the environment for
displaying a text panel containing the price when the user picks a pair of shoes.

Table 1. A simple template configuration scenario.

3.1 The VR Object Taxonomy
For creating a usable configuration mechanism, EUDevs need a language for specifying the VR
environment behaviour they can understand and manipulate. Even if we take inspiration from the
rule-based configuration in IoT, there is a point that marks a substantial difference between the two
domains. In an IoT environment, the capabilities of the physical devices define the actions they can
perform. Two instances of the same device have the same associated actions. In VR, this is not true.
The Entity Component System architecture [30], used by most VR engines, allows fine-grained
control of the behaviour for each object instance in an environment. The component list defines
what objects can do, not their physical appearance. So, we can have objects in the environment
that look the same (e.g., they share the same 3D model) but behave differently, as typically happens
in games.

Therefore, before introducing a rule language defining when objects should do something, a TB
needs a way for specifyingwhat an object in the scene can do. Such a definition must include actions
understandable by EUDevs, so it must avoid technical concepts and jargon, and rely on a general
naïve understanding of the world and knowledge of the particular domain the VR environment
models. On the one hand, we expect different domains to require performing different actions. On
the other hand, if TBs need to map all the necessary internal components to high-level actions,
adopting the solution would be unpractical. Therefore, we opted for providing TBs with a taxonomy
of reusable high-level types for building VR environments templates. The taxonomy does not claim
to completely represent all the possible VR object categories, but it defines a reusable starting point.
Its effectiveness depends on an appropriate coverage of common VR concepts, but also on domain-
dependent extensions, which we must support at the implementation level (see Section 4.1). For
creating the concept list, we analysed the literature on model-based approaches for VR development
(e.g., [20]), and the categorisation used by 3D models and assets repository, such as SketchFab,
TurboSquid, Unity Asset Store etc. We briefly introduce the main concepts in this section, and we
provide a more detailed description in Appendix A.

Valentino Artizzu, et al.

Fig. 1. Class diagram for the object categories in the VR templates.

Figure 1 shows a class diagram depicting the proposed taxonomy. Its types define a coarse
representation of virtual objects categories. In our approach, TBs assign such categories to each
virtual object instance, while the EUDev can exploit the actions associated with each category for
configuring their behaviour. Such assignment provides the following pieces of information to both
the EUDev and the runtime support: i) a semantic tag for the game object, specifying the category
it belongs to; ii) the specification of a set of status variables, whose control allows changing the
object’s state dynamically; iii) the specification of a set of actions associated with the object, which
are the building blocks the EUDev uses for programming the VR environment behaviour.

In our taxonomy, we make a distinction between Objects and Behaviours. The difference between
the two categories is related to their physical appearance, which drives the assignment: the former
are the things a user can perceive, while the latter are common behaviours we can identify across
the different categories of objects. We categorised perceivable objects according to an ontological
criterion: each object instance belongs to a single category, and we cannot assign it to multiple
ones. For instance, a model whose shape resembles a chair belongs only to the Furniture category,
and we cannot assign it, for instance, to Food. However, we can add the Container behaviour to the
same chair, meaning that we can put other objects in it. If we consider a sandwich, we can assign it
to the Food category, but we can consider it also as the Container of its ingredients. Therefore, Food
and Furniture are Objects, the Container is a Behaviour.
The object categorisation is coarse. We limited the hierarchy’s depth to high-level categories,

stopping when we considered that going further would not add useful information for the EUDev.

For instance, we assign an object representing a cat to the Terrestrial Animal category. We did
not create a specific sub-category for the concrete species. The reason is that a hypothetical Cat
category would have the same status description and actions of a Terrestrial Animal. However,
such simplification on the object taxonomy would cause usability issues for EUDev in creating the
behaviour rules: they will struggle in reasoning about objects belonging to abstract categories. So
we provided TBs with means for specifying EUDev-friendly aliases for a category name, which
will appear on the rule representation in natural language (see Section 3.2). If a TB defines an alias,
the EUDev can refer to the hypothetical Cat Tom.

The Behaviour category models typical interactive behaviours we can assign to different objects,
independently from how they appear. It is possible to assign more than one Behaviour to a virtual
object, composing the set of possible actions the EUDev can program. In general, a configurable
virtual object is associated with one Object category and a list of Behaviours. For instance, a TB can
assign a Collectable and Sound interaction to a piece of Furniture. In this way, the EUDev can define
rules that, for example, collect the piece and play a sound when the main character bumps on it.
The final set of actions that a EUDev can configure on a single object consists of the union of all
the actions defined by the Object and the different Behaviour components.

We have categories representing dynamic attributes of the 3D scene (Camera, Lights, Transitions),
simple techniques for defining environment manipulation and automation (Bounds, Container,
Collectable, Counter, Keypad, Switch, Lock, Timer, Trigger) and simple representations of media
content (Image, Sound, Text, Video). For instance, considering a Container, it holds the information
about the capacity and the number of objects currently it contains. It has the actions for inserting
and removing objects or for emptying it.

A behaviour requiring a particular mention is the Placeholder. We introduced it to support TB in
explicitly defining extension points in the template where the EUDev can insert custom content.
We include a sample using such a category in Section 5.

Considering the sample in Table 1, the environment contains at least a Character representing
the shop visitor (i.e., the user of the VR environment), Clothing objects representing the shoes and
all the other products, Text objects representing the information panels for showing the price. In
addition, all products are associated with a Placeholder and an Interactable behaviour. The former
allows the EUDev to set a custom 3D model for each product. The latter allows the users (i.e., the
shop visitors) to pick and release the products.

3.2 The EUD Rule Language
The rules EUDevs use for configuring the VR environment behaviour have a structured definition,
i.e., they follow a precise syntax scheme, but are readable as natural language (English) sentences
for grasping their meaning.

The complete grammar for the rule language is available on in the GitHub repository1, defined
using AntLR2. In the following, we report some excepts using uppercase words for identifying
terminal tokens (e.g., DEFINE for the token “define”). Listing 1 shows the grammar for a single rule,
including two sample structures: a rule including an event and a single action, and one including
an event, a condition and multiple actions.

// rule grammar

rule : WHEN action (IF condition)? THEN (action)* ;

// sample structure: no condition, single action

1https://github.com/cg3hci/ECARules4All
2https://www.antlr.org

https://github.com/cg3hci/ECARules4All
https://www.antlr.org

Valentino Artizzu, et al.

when [action1] then [action2]

// sample structure: single condition, multiple actions

when [action2] if [condition] then [action 3] [action 4] ... [action n]

Listing 1. Declaration of a rule

A rule follows the event-condition-action (ECA) structure. The when keyword introduces the
event part, described through an action. An action is associated with every method supported by
classes in Figure 1, or domain-dependent extensions. So, a EUDev can specify rules that trigger
whenever a managed object in the VR environment does something. The syntax representing the
action that triggers a rule is the same for describing further actions the EUDev enters to define the
environment response, in the then part. This eases the identification of actions as commands and
event sources. The then part of a rule corresponds to the action part in the ECA schema. EUDevs
can insert multiple actions in the then part, including multiple changes in response to a given
event. All these actions, in turn, will raise the associated events, possibly triggering other rules. We
report in Listing 2 six sentence schemes we identified, together with an example for each of them.

While the first five are straightforward, the last one requires some explanation. Passive actions
are associated with the object type that undergoes the action, but they increase the available actions
for the subject in the rule language. This happens when, considering a [subject] [verb] [direct
object] structure, we have the implementation of the verb logic on the class representing the
direct object. This sometimes makes sense for separating the concerns from an engineering point
of view. We have an example of this type of action in the wear method of the Clothing object, which
requires a Character parameter. By keeping its implementation in the Clothing class, we decouple
the basic actions of a character from those involving other objects. Otherwise, given that users in
the VR environment are Characters, it would become the class defining the large majority of all the
possible actions. In contrast, from a EUDev perspective, the best description in natural language
is “the character wears the clothing” and not “the clothing is worn by the character”. By using a
passive action, the owner is the type of the direct object, while it uses as a parameter the subject of
the sentence in natural language.
// schema 1: [subject] [verb]

THE LANDVEHICLE IDENTIFIER STARTS

the land vehicle car starts;

// schema 2: [subject] [verb] [direct object]

reference: THE object IDENTIFIER;

THE character IDENTIFIER LOOKS AT reference

the human visitor looks at the art painting;

// schema 3: [subject] [verb] [value]

THE character IDENTIFIER JUMPS ((TO position) | (ON path)) ;

the human visitor jumps to the position entrance;

the human visitor speaks "Hello world!";

// schema 4 (state change): [subject] changes [property] to [value]

THE ART IDENTIFIER CHANGES AUTHOR TO STRING_LITERAL;

the art painting changes author to "Picasso";

// schema 5 (number increase/decrease): [subject] increases [property] by [value]

THE character IDENTIFIER (INCREASES | DECREASES) LIFE (BY floatLiteral)?

the human player1 increases life by 2;

Fig. 2. Class diagram for the ECA rule engine.

// schema 6 (passive action): [subject] [verb] [direct object]

THE character IDENTIFIER WEARS THE CLOTHING IDENTIFIER;

the human player1 wears the clothing tShirt;

Listing 2. Different types of action specification

Each rule has an optional condition (the if part), which defines the conditions for executing
the then part. End users usually avoid writing conditions, or they use a simple check on a single
property [45]. Given this fact, many ECA languages for end users limit the condition to a single
predicate. We support the definition of composite expressions in the language specification, but
in the implementation of the rule-editing interface we support only one level of and/or on simple
checks to avoid clutter. The solution resulted in a useful compromise between expressiveness and
the interface usability already validated in other tools [5, 14].

Listing 3 shows the rule defining the custom behaviour required by the scenario in Table 1. The
event triggering the rule is the pick action, whose subject is the character representing the user
of the VR environment. Its direct object is sneakers4 one of the Clothing objects representing the
selling products. There is no need to specify further conditions for triggering the rule, so we omit
the condition part. The reaction of the environment to the event is showing the information panel,
called infoPanel2, which is a Text object.
when the character visitor picks the clothing sneakers4

then the text infoPanel2 shows

Listing 3. A rule specifying the behaviour required by the scenario in Table 1

3.3 The Rule Execution Support
The last component in our solution is the support for executing the rules at run-time. Since it is
not feasible for EUDev to build the environment each time they change the rule definition, they
need a specific run-time component inside the VR template, which we call Rule Engine. At a high
level, it has two tasks: triggering and executing the rules. We provide here an abstract description
(i.e., independent from the VR engine) of the classes we used for solving this problem, depicted in
Figure 2.

Valentino Artizzu, et al.

We start from an object-oriented description of the rules, consisting of three classes: Rule,
Condition and Action (see Figure 2). The class RuleEngine is responsible for managing and
executing such a rule description. We have a single instance of such class in the system (singleton
pattern [17]). The class has methods for adding and removing rules from the configuration set (add
and remove).

A Rule contains the event field, specifying the action that triggers the rule. A Condition is an
object describing either a simple predicate or a tree composing such predicates through boolean
operators. The predicates need to be tested against the values contained in the state variables.
Both action and the condition description contain references to the VR objects in the environment
(either memory references or identifiers to lookup in the object repository). Executing a rule means
first checking the condition on the current state of the VR objects and then invoking the method
corresponding to each action, passing references to objects or the values specified in their definition.

Besides defining how to execute the rules, the RuleEngine also defines when to execute them. The
triggers are the same actions the EUDevs use for specifying the behaviour. This means that each
action in a rule definition can potentially trigger other rules. So, after finishing the execution of an
action, the rule engine needs to check whether there are rules to trigger or not. The rule engine
requires a notification each time an action completes. If such action triggers a rule, the engine
enqueues it and continues the execution loop until the queue is empty. In Figure 2, we adopted
the publish-subscribe pattern (a variant of Observer [17]) to avoid the proliferation of interfaces
defining callback methods. The EventBus class represents a channel abstraction where it is possible
to publish messages on different actions and to register for receiving them. The publishers are the
classes implementing Objects and Behaviours, which will send a message on the EventBus each
time an action they implement is completed. The RuleEngine class represent the subscriber, which
registers for notifications from each action in the when clause contained in the environment rules.
The reaction to the notification enqueues the rule corresponding to the message and starts the
execution loop if needed.

It is worth pointing out that there are two main causes for completing an action. The first is the
executeAction method in the RuleEngine, which occurs after triggering a rule as a consequence
of the completion of another action. The entry point in the rule execution loop is the second cause,
which is an interaction between the user and the environment or between two game objects. The
responsible for raising such notifications is the implementation of the taxonomy types. It must
define a mapping between the internal state of the VR objects in the engine and its high-level
representation for the EUDev and vice-versa, and publish messages on the EventBus whenever the
values change.

Considering the scenario in Table 1, the RuleEngine contains a single Rule object, including an
Action instance (picking the shoes) in the event field and another instance (showing the text panel)
in the actions list. The rule triggers as a consequence of the interaction between the user and the
environment. Thus, the Interactable implementation is responsible for publishing a pick message
on the EventBus. The RuleEngine receives the notification and enters the rule execution loop, it
performs the action corresponding to showing the information panel, checks whether it triggers
other rules and, supposing that there are no further rules to execute, it ends the loop.

4 PROOF-OF-CONCEPT IMPLEMENTATION
In this section, we discuss the main properties of the implementation we provided for the solution
depicted in Section 3. We selected Unity3D3 as VR engine and C# as development language.
The discussion has two main objectives: the first is demonstrating that the approach is feasible,

3https://unity.com

https://unity.com

while the second is showing concrete opportunities for customizing the approach for different
needs through extensions. The plugin relies on the standard Unity XR Interaction Toolkit for
supporting VR interactions, minimizing the requirements for external libraries. We developed the
other functionalities leveraging objects directly provided by the game engine. The code is available
on GitHub4, together with a short demonstration video in the additional paper material.

4.1 The ECALibrary
The ECALibrary contains the implementation of the classes included in the VR taxonomy introduced
in Section 3.1. A TB can assign a given GameObject (the generic VR object in Unity) to at most one
category. It is not mandatory to assign each GameObject to a category. The TB assigns only those
that the EUDev can further configure.
The root of the simplified object hierarchy we created for representing VR environments to

EUDevs is the ECAObject class. It contains the variables and actions common to all categories. The
same applies to the ECABehaviour component and its sub-classes, which model the interactive
behaviours. They are basically a C# implementation of the taxonomy described in Section 3.1.
Both the ECAObject and the ECABehaviour are components in the Entity-Component-System

architecture supported by Unity. They are sub-classes of MonoBehaviour, the abstract component
in Unity. We do not use inheritance for expressing the category hierarchy, which would break the
composition in the ECS architecture. However, we specify that the implementation of a component
requires another one through the RequireComponent class-level attribute. We implemented the
inheritance in the taxonomy through such an attribute.
An interesting point to discuss here is the effort we put into implementing the rule execution

support that does not assume any object categorization, keeping its definition agnostic of the
types in the ECALibrary. The only distinction we assume in the categorization is between objects
and behaviours. The other pieces of information about the category or behaviour type name, the
list of state variables, and the exposed actions are included as metadata in the component class
implementation, declared as C# custom attributes5. Given such a structure in the implementation,
the following is both the description of how we defined the taxonomy in Section 3.1 and of how
third-parties can enhance the set of available categories.

The first step for including a component among those managed by the rule engine is specifying
a type name that a EUDev can understand. For doing this, we use the ECAType class-level attribute,
which marks it as a managed component and provides the runtime (see Section 4.2) with the
information on the type name.

[ECAType("human")]

[RequireComponent(typeof(Animal))]

public class Human : MonoBehaviour { ... }

Listing 4. Annotating a Unity Component for managing it at runtime through ECA rules

Then, the rules run-time needs information about the variables that maintain the state and the
methods implementing the actions. For defining the state variables, we provide another custom
annotation (ECAStateVariable) marking public instance variables or properties of a C# class. A
state variable has of the following base types: Boolean, Color, Float, Integer, Position,
Path, Identifier, Rotation, Text, Time, having a straightforward meaning. Listing 5 shows
two sample annotations defining two state variables in the Character object. The first annotation
marks a flag for identifying the character controlled by the final user. The annotation defines the

4https://github.com/cg3hci/ECARules4All
5https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/attributes/creating-custom-attributes

https://github.com/cg3hci/ECARules4All
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/attributes/creating-custom-attributes

Valentino Artizzu, et al.

name of the object variable as presented to the EUDev and its type in the rule system. The second
annotation defines the variable containing the life points for a character, stored as a float.
[ECAStateVariable("playing", ECABaseType.Boolean)]

public ECABoolean playing;

[ECAStateVariable("life", ECABaseType.Float)]

public float life;

Listing 5. Annotating the instance variables of a Unity Component for modifying them through rules

Finally, a third custom attribute (ECAActionAttribute) marks the actions that a given object
or behaviour provides to EUDevs for defining the environment behaviour. It has a constructor
for each action type we identified in Listing 2, defining the rule syntax. It specifies the allowed
taxonomy type for each part of the action. Listing 6 shows three examples of recurrent action
definition patterns. The first defines the swims to action for an aquatic animal, which moves it to
the position specified in the parameter. The second allows any ECAObject to look at (i.e., turn to)
another object. Finally, the last sample is a passive action. Differently from the previous ones, the
action belongs to Character type in the taxonomy in the EUDev syntax, but the method is actually
defined in the ECAFood class, which is the implementation of the Food type.
[ECAAction(typeof(ECAAquaticAnimal), "swims to", typeof(ECAPosition))]

public void Swims(ECAPosition p) { ... }

[ECAAction(typeof(ECAObject), "looks at", typeof(ECAObject))]

public void Looks(ECAObject o) { ... }

// the following method belongs to the class ECAFood

[ECAAction(typeof(ECACharacter), "eats", typeof(ECAFood))]

public void EatenBy(ECACharacter c) { ... }

Listing 6. Annotating a Unity Component instance variable for modifying it through rules

In order to implement the sample configuration scenario in Table 1, the player in the Unity scene
is associated to the ECACharacter component, the virtual object representing the shoes contains
both the ECAClothing, the ECAPlaceholder and the ECAInteractable components, while the
virtual information panel contains the ECAText component. They define the actions and the status
variables required for implementing the logic in Unity (e.g., the visibility boolean, the text in the
information panel etc.).

4.2 The Rule Engine
The ECARuleEngine is the class responsible for executing the rules defined by the EUDev. When
a template configuration starts in the VR experience mode, it loads the rules from a text file and
builds their object-oriented description. The implementation of the engine does not assume any
structure on the ECAObject types, but it dynamically obtains it reading the custom attributes.
Thus, no change to its implementation is required if a TB extends the set of available objects or
behaviours. This means that extending the taxonomy has no impact on the engine, and the new
rules are ready to be used by EUDevs.
An ECARule is the C# representation of a rule. An ECACondition is an object describing either

simple or composite predicates on managed objects. The action and the condition description
contain references to GameObjects in the VR environment. For instance, if we consider the sample
action “the human visitor looks at the art painting” ([subject] [verb] [object]), the object-
oriented description will contain a GameObject reference having id visitor and containing the

component ECAHuman, a reference to its LooksAt instance method and a reference to a GameObject
whose identifier is painting.

Supposing that all these pieces of information are available, the problem of writing a method
in the ECARuleEngine class for executing a generic action is simple: we receive an ECAAction
instance as a parameter, and we invoke the referenced method on the subject via reflection. We pass
the direct object as a parameter and, in the more general case, all the other values or references
requested by the six action types we identified (see Listing 2).

We assume that rules and Unity share the same virtual object identifiers and that the GameObjects
contain the components from the ECALibrary, specified by TBs. In such a case, identifying the
components and the VR object references is trivial. The last information we need is related to the
methods that implement the actions and the instance variables that represent the state in a VR
object. Having the custom attributes identifying both state variables and actions we discussed in
Section 4.1, we can inspect a GameObject instance using C# reflection as shown in Listing 7. We
loop over all the components associated with the object, and we look for those marked with the
ECAType annotation, indicating a managed type. Then, we go down looking for action methods or,
symmetrically, for state variables. In this second step we search for the ECAActionAttribute at
the method level. For state variables we look for the ECAStateVariable on instance variables (or
properties). Once we found one, we add the action or state variable to the ones supported by the
current VR object instance.

foreach(Component c in obj.GetComponents ())

{

Type cType = c.GetType ();

if(Attribute.IsDefined(cType , typeof(ECAType)))

{

// we found a managed type

foreach (MethodInfo m in cType.GetMethods ())

{

ECAActionAttribute [] actions = (ActionAttribute [])

m.GetCustomAttributes(typeof(ActionAttribute), true);

foreach (ECAActionAttribute a in actions)

{

actionMethodList.Add(a, m);

}

}

}

}

Listing 7. Finding all the actions associated with a GameObject instance. We follow a symmetric procedure
state variables.

The object-oriented representation of the rule in Listing 3 in the proof-of-concept implementation
is the one described in Section 3.3. The reflection-based implementation of the engine requires
including into ECAAction references to game objects for the subject and the direct object, while
the verb field corresponds to a method reference (i.e., an instance of the MethodInfo class). The
event references the player as subject, the pick method as verb and the virtual shoes object as the
direct object. The action references the text panel as subject and the shows method as verb. Such
structure allows theRuleEngine to find the rule to execute by comparing the ECAAction instance
received in the notification with the event field of each ECARule in the list. In addition, it allows
executing the actions by invoking the verb method through reflection.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. EICS, Article 163. Publication date: June 2022.

Valentino Artizzu, et al.

4.3 Adding Configuration Points to a Scene
This section briefly details the operations that a TB should perform to make a generic Unity Scene
configurable by a EUDev, transforming it into a template.

The first step is loading the plugin into the Unity project. The plugin consists of a simple Unity
prefab, called ECAKit that a TB can simply drag among their assets for empowering a scene with
the ECALibrary solution. Prefabs in Unity are game objects persisted with all their components
and configurations that may be loaded in different scenes.

The second step the TB needs to perform is assigning one of the Unity Components described in
Section 4.1 to all VR objects he would like to open for EUDev configurations. Such assignment may
also include the library extension with ad-hoc objects or behaviours.

Finally, the TB creates an executable version of the template, performing a standard build of the
Unity project. TBs will share the result with the EUDevs for the configuration. No further build is
required after creating the template.

4.4 Configuring a Template
This section briefly describes a proof-of-concept interface we implemented to provide EUDevs
with support for configuring a template. After a TB creates the template, the changes specified
by a EUDev are stored as external assets of the template. They are dynamically loaded at the
environment startup or immediately after they are defined. This allows distributing a template
as a simple Unity-based application without any build step for the configured environment. The
resulting template executable application runs in two modes:

• In the VR experience mode, the template loads the EUDev configuration and supports expe-
riencing the resulting VR environment, executing the specified set of rules in response to the
user’s interactions. The rules and the other external assets defined may differ according to the
different configurations, changing the resulting experience. A given template configuration
is a bundle of both the template executable and the configuration assets and rules.

• In the authoring mode, the EUDev exploits an immersive authoring interface for defining
a new configuration or modifying an existing one. Such mode requires a “secret” action
sequence for being activated, including a password, which TBsmay generate for each template
customer. The EUDev creates the rules in such a mode and associates the external assets with
placeholder objects.

Launching a template application starts by default in the VR experience mode. To activate the
immersive rule authoring interface, the EUDev clicks a button hidden under the wrist of the non-
dominant hand. A numeric keypad asks for an access code to avoid unauthorized and unwanted
activation of the authoring interface (Figure 3-A). Upon successful authentication of the EUDev,
the template starts the authoring mode, and the application shows the interface in Figure 3-B. It
contains four buttons: the first allows creating a new rule (Add Rule), the second put the template
in the VR experience mode for testing the current rules set (Test Rules), the third shows a panel
containing all the rules in the environment (Show All Rules), while the fourth allows selecting
custom 3D models for placeholders.
The rule list is a simple panel containing the natural language representation of each rule in

the environment. The EUDev can pick one of them for changing it, or s/he can create new ones.
In both cases, the editing UI shows the rule detail visualization (Figure 3-C). Each line contains
one of the natural language sentences belonging to the rule, according to the language specified in
Section 2.2. The initial adverbs identify the rule parts, while the fields in each line allow editing the
sub-parts of an action or a condition. We designed the panel trying to minimize possible syntax
errors while preserving the readability of the rule.

A B

C

Fig. 3. Rule-editing interface for EUDevs. Part A shows the activation of the authoring mode, part B shows
the non-dominant hand menu for activating the different authoring sections, while part C shows the rule
editing panel and the highlighting of the involved VR objects.

When starting from an empty rule, the EUDev needs to insert at least an action for the when part
and an action in the then part. So, it includes both the when and the then keywords with two fields
inviting the EUDev to select the subjects of the two actions. Pointing to one of the highlighted
fields, the EUDev can choose the subject of the action or the condition simply by pointing it in
the virtual environment. Once selected, the object’s type and name will appear inside the field.
The editor assigns a highlight colour to the VR object, drawing a border both around the object
and around the field in the panel (see Figure 3-C). The EUDev can cancel the selection by pressing
the X button inside the text field. Once the EUDev has selected the subject, the editor calculates
the set of verbs it supports. Then it shows this set as a standard list menu and, depending on the
selected verb, the editor will support picking further objects or entering values through pointing
or standard input techniques (e.g., virtual keyboards). It will not allow completing an action with
objects or values that do not respect the language specification.

Since the possible values for each action or condition part depend on its predecessor, the editor
enforces such dependencies when the EUDev changes one of the values s/he entered at a previous
step by cleaning all the values that depend on it. For instance, if the user changes the subject after

Valentino Artizzu, et al.

Fig. 4. The UI panel for managing placeholders.

selecting a verb, the editor clears the verb too. The same applies to the object or values, which
depend on both the subject and the verb.

A EUDev can also insert additional actions in the then part by pressing the add action button in
the main menu, creating a new slot below the then clause, and starting from the subject selection.
Finally, s/he can insert one or more optional conditions by pressing the add condition button in the
menu. The first time the EUDev presses this button for a rule, it will add the if part between when
and then, and the condition editing will start from picking the subject. The second time will add a
list menu for selecting the boolean operator (and/or).

We included a dedicated panel for managing Placeholders, which correspond to a virtual object
whose appearance cannot be determined while creating the template. For setting the actual content,
which means replacing the mesh of an exiting GameObject, the EUDev uses the interface in Figure 4.
On the left-hand part, the UI shows the list of the existing placeholder in the virtual environment.
On the right-hand part, we have a list of meshes, which contains the EUDev specific 3D models.
Currently, they must be loaded into a specific sub-folder at the same level of the template executable,
but we plan to support online repositories in future versions of the plugin. Assigning a replacement
to a placeholder implicitly defines a rule containing an action that we execute at the environment
startup without passing from the rule editor. This is a compromise for keeping low the barrier since
startup events are hard to understand for non-programmers.
Finally, the UI allows saving a rule once its definition is correct from a syntax point of view.

Rules are persisted in a text file, and they are added to those available for the ECARuleEngine (or
replaced it if we are modifying existing ones), to support the run-time execution.

5 DEVELOPMENT CASE STUDIES
We demonstrate the support provided by the ECALibrary plugin reporting on the development
of two sample templates: a virtual showcase and a virtual museum. We show their flexibility in
accommodating two different usage scenarios for each template. We created the configuration
ourselves for showcasing the plugin implementation.

5.1 Case Study 1: Virtual Shop
5.1.1 Template. The template consists of a large square room, including tables, clothes hangers
and shelves where EUDevs can show their products. Figure 5 depicts how the template appears
before an EUDev configuration. We placed four tables at the same distance from the corners of
the room, with shelves positioned in front of them and mannequins in between. In addition, there
are some additional elements supporting the visualization of multimedia content, represented as

Fig. 5. The virtual shop template.

a TV screen. We included a small screen on each table and a bigger one near the wall opposite
to the initial position of the visitor. Nearby the bigger mannequins, we placed some buttons for
supporting the EUDevs in defining some interaction or animation on their content.

More in detail, the template contains many ECAObjects the user can configure:
• All the furniture and light elements in the environment are available for EUDev configurations
respectively through the ECAFurniture and ECALight categories.

• All the light sources in the environment are available for EUDev configurations through the
ECALight object.

• The TV has a ECAVideo interaction.
• Each mannequin is a ECAMannequin object.
• There is an audio source in the shape of a radio, which is associated with a ECASound
behaviour.

• All the areas of interest in the shop (for instance around a table, nearby the mannequins, etc.)
have an ECAInteractable object for triggering proximity-based interaction.

• On top of each table there is a ECAText object that may be used for including additional
information on the available items.

• All items on top of the tables, on the shelves, etc. are ECAPlaceholders.
• A ECATimer for time-based interaction.

5.1.2 Clothing Store. The first sample configuration we deliver for this virtual shop template
represents a clothing store. In such a configuration, the placeholders throughout the room have
been replaced with a custom clothes model. The large TV on the wall is hidden together with the
placeholders on the shelves. The overall idea is to support the inspection of different clothes on
top of the mannequins and show advertisements on the production process and quality. In the
following, we summarise the supported interactions.
The shop includes a customized advertisement video that plays when the user approaches one

of the tables and interacts with it (by pressing a button on the remotes). The environment sets an
ambient blue light focused on the table and plays an advertisement on the small TV placed on top
of it (see Figure 6-A).

when the character visitor interacts with the furniture table1

then the light mainLight turns off

the light tableLight1 turns on

Valentino Artizzu, et al.

A B

C D

Fig. 6. Sample interactions in the clothes store configuration. A) When the visitor approaches the table, a blue
light highlights the table, and the TV monitor plays an advertisement. B) The visitor approaches another table,
and the environment shows some price tags. C and D) The mannequin wears a different outfit according to
the button pressed.

the video tableAdvertisement1 plays

The buttons near the bigger mannequin support the change between the winter and summer
collection of clothes, changing the mannequin’s dress. The interaction is depicted in Figure 6-C
and D. The rule for setting the winter collection is the following:
when the character visitor presses the button bigButton1

then the mannequin bigMannequin wears the clothing hat

the mannequin bigMannequin wears the clothing greentshirt

the mannequin bigMannequin wears the clothing bluejeans

In addition, when the visitor approaches one of the clothes in the shop, a price tag appears on
top of the nearby items. The resulting interaction is displayed in Figure 6-B. The tag is hidden after
5 seconds.
when the visitor interacts with the table2

then the text infoPanel2 shows

the timer timeActions changes duration to 5

the timer timeActions starts

when the timer timeActions reaches 0

then the text infoPanel2 hides

... // the other infoPanels hide too...

5.1.3 Shoes Store. We created a virtual shoe shop on top of the virtual shop template in the second
configuration. The pieces of furniture specifically useful for clothes are hidden, e.g., the racks and
the clothes hangers, the mannequins, etc. Shoe models replace the placeholders on the shelves and

A B

C D

Fig. 7. Sample interactions in the shoe store configuration. A) Pressing the button, the stool will rotate by 30°.
B) Interacting with the radio will turn on or off the background music. C and D) When the user manipulates
the shoes, above it will appear an informative panel. It disappears as soon as the user releases them.

tables position. The small TVs on top of each table and the large TV on the wall are hidden since
this configuration does not use multimedia promotional content. We replaced the placeholder on
top of the stool with a custom 3D model of shoes. When the visitor presses the nearby button, the
stool rotates together with the shoe model for facilitating the visitor inspection (see Figure 7-A).
The associated rule is the following:
when the character visitor presses the button bigButton1

then the furniture stool rotates by 30 degrees around Y

We show the information about the shoe price when the user points them. The environment
shows a panel including such pieces of information. The panel closes as soon as the user releases the
shoes (Figure 7-C and D). We used the rule defining the first interaction as a sample for describing
our approach in Sections 3 and 4.1 (see Listing 3). The rule for the second one is the similar, replacing
the picks action with releases and shows with hides.

Finally, the visitor can decide whether or not to listen to some background music while visiting
the shop. For stopping or playing the music, it is sufficient to approach the radio in the environment
and interact with it (see Figure 7-B). Such interaction allows us to show a rule having a condition
statement. A similar rule stops the music if it was playing.
when the visitor interacts with the audio radio

if the audio radio playing is true

then the audio radio stops

5.2 Case Study 2: Virtual Museum
5.2.1 Template. The template scene consists of four square rooms connected by the main entrance
having a large skylight that gives natural light to the room. The main room is connected with
the other four through open doors. We included a dark parquet floor and white concrete walls

Valentino Artizzu, et al.

Fig. 8. The virtual museum template (isometric view - walls and ceilings are transparent for clarity).

creating a simple yet elegant environment for placing artworks, which are placeholder elements
in the rooms besides the ceiling chandelier. The four rooms contain some sample artworks for
providing EUDevs with easy starting points for different museum types: one contains paintings,
one pottery, one a collection of sculptures, while the last contains a multimedia room. Figure 8
shows an overview of the template.

The ECAObjects included in the template are the following:
• All the rooms in the environment, associated to the ECABuilding category, for implementing
interactions when the user enters or leaves the room.

• All the pieces of art are ECAArtworks in the environment. They are also associated to a
ECAPleaceholder behaviour for changing their 3D model

• Environmental lights (ECALight objects) controlling the illumination settings
• A directional light (ECALight) for each artwork dedicated to its highlighting.
• A non-playable human character, playing the role of a virtual museum guide (a ECAHuman).
• A set of videos in the multimedia room (ECAVideo objects)
• A set of ECAButtons for selecting up to 4 different videos in the multimedia room.
• An ECAAudio for reproducing music or environmental sounds.
• A ECAText and an ECAImage for putting information about each artwork.
• A 360𝑜 video for showing immersive video contents.

As in the previous case study, we show that different results can be achieved using the same
template providing two sample configurations.

5.2.2 Virtual Art Gallery. For the first scenario, we suppose having to promote an art show in the
real world. People interested in learning more and visiting the real show can first experience a
preview in the virtual environment. When the visitor approaches an artwork, a virtual museum
guide will briefly introduce it by voice, an ambient light will fade out while projectors aimed at the
artwork will light up.

when the character visitor interacts with the building statueRoom

then the human guide starts -animation "artwork1Presentation"

the light globalLight changes intensity to 0

the light spotLight1 changes intensity to 1

The visitor can touch the artwork to show a metal plate with the artwork’s name, and by touching
the plate, the environment shows a descriptive content represented as an image (see Figure 9).

A B C D

Fig. 9. Left: Each room in the museum has a specific soundtrack that plays when the player enters it, the music
stops when the player leaves the room. Right: When the user approaches any artwork, the corresponding
plate with information will appear.

Fig. 10. When the user steps at the centre of the room (into the spotlight on the floor), a 360◦ video starts
playing around him. As the user steps out from the centre of the room, the video stops and disappear (the
second image shows the outside of the video-globe, the user will be inside it, as shown in the image on the
right).

when the character visitor interacts with the art Artwork_1

then the furniture Artwork_1_plate shows

when the character visitor interacts with the furniture Artwork_1_plate

then the image information changes hides

5.2.3 Virtual Geography Museum. In this configuration, instead of paintings, the museum shows
big pictures of real places, like Niagara Falls or the Grand Canyon, creating a virtual experience
for education purposes. When the visitor enters the room with the pictures (the paintings in the
template), the environment plays an ambient sound from the place portrayed in the pictures.

when the character visitor interacts with the building paintingRoom

then the audio backSound plays

The visitor can touch the plate with the place’s name to trigger a fade out of the lights and
play a 360◦ video. When the video ends, the lights go back to normal and the visitor can continue
exploring the museum.

when the character visitor interacts with the furniture plate1

then the light globalLighting changes intensity to 0

the audio backSound stops

the video video360 plays

when the video video360 ends

then the light globalLighting increases intensity

the audio backSound plays

Valentino Artizzu, et al.

In addition, the user can select the 2D video playback in the multimedia room through two
buttons. For instance, the button on the left triggers the following rule:
when the character visitor pushes the button videoButton1

then the video video1 changes source to "sea.mp4"

the video video1 plays

6 DEVELOPER EVALUATION
Besides the validation through the development of the case-studies, we ran a lab study with
developers for getting their feedback on the perceived usefulness of the overall approach and the
usability of the Unity plugin we developed.

Procedure. The study consists of five different parts. In the first one, the participants read the
study description statement and expressed their informed consent for participating in the study.
After that, they filled out an anonymous demographic questionnaire, including questions on their
experience level in VR development.

In the second part, we asked them to read a brief description of the roles in the envisioned EUD
workflow (see Section 3), how to create a template using the Unity plugin, and how to extend
the library. Afterwards, they filled out a questionnaire evaluating the perceived usefulness of the
approach and the expected usage difficulty through a set of Likert items. This allowed us to measure
the expectations of the developers before using the plugin.
In the third part, they executed three development tasks, starting from the scene of the Virtual

Shop template. The tasks are the following:
T1 The participant has to provide the EUDevs with the support for defining the environment’s

reaction when a push-button in the scene is pressed. This task represents the case in which it
is sufficient to add an existing component to define the configuration point of the behaviour.

T2 The participant has to find the 3D model of a stool into the environment and allow EUDevs
to replace it with their own 3D model (e.g., of a chair). This task represents the case in which
the TB knows that the EUDevs would like to put their own content instead of the model
included in the scene (e.g., their products in a showcase).

T3 The participant has to extend the set of objects provided by the plugin adding a key that
can unlock (i.e., make visible) another object. The EUDev must define the object to unlock
through a rule. This task represents the case in which the object set is not enough for the TB
purposes and requires an extension.

At the end of each task, the participant answered the Subjective Mental Effort Questionnaire
(SMEQ) [40] for measuring the effort, while we collected the completion time.

The fourth part consists of filling a post-test questionnaire, including the same Likert items from
the second part and assessing differences in the perception after the usage. In addition, we asked
developers to rate the plugin’s efficiency and effectiveness together with their general satisfaction.
The fifth part consists of a debriefing phase, where we discussed with each participant the

problems they encountered and the strong points they noticed in the approach.

Participants. Participation in the study was completely voluntary. We contacted former students
who graduated from our University and work or study in game and/or VR development. We invited
those who responded to the call in our lab for individual sessions. To thank them for their time, we
offered a coffee break at the end of the session.

Nine people participated in the study, eight males and one female. Their age ranged from 22 to
37 years old (𝑥 = 26.7, 𝑥 = 22, 𝑠 = 4.95). They had a good education level: 3 a Bachelor Degree, 5 a
Master Degree and 1 a PhD. The development experience was also good: 5 participants had 4 to 6

Fig. 11. Task completion time and perceived effort [40]. Highlighted pairs have a significant difference
(Wilcoxon signed-rank test, 𝑝 < .05. We used the Bonferroni p-valued adjustement for repeated comparisons).

years experience, 3 from 7 to 10 years and one more than 10 years. They had less experience in
game and VR development, but it was adequate for the purpose of the study: 8 from 1 to 3 years
and one more than 10 years. All participants were proficient in Unity, but they used also 3D and
VR-related tools: 3 used Unreal Engine, 3 A-Frame, 2 Blender, 2 Maya, one 3D Studio Max one
Steam VR. We asked them to self-assess their skill in different tasks related to VR development on a
1 to 7 Likert scale. They rated high their ability to define the environment behaviour (𝑥 = 5.3, 𝑥 = 6,
𝑠 = 1.94) and the interaction (𝑥 = 4.9, 𝑥 = 5, 𝑠 = 1.83). Instead they gave an average rating to their
3D object modelling abilities (𝑥 = 2.9, 𝑥 = 2, 𝑠 = 1.83), their expertise in modelling environments
(𝑥 = 3.0, 𝑥 = 3, 𝑠 = 1.58) and their skills in composing them (𝑥 = 3.8, 𝑥 = 4, 𝑠 = 1.71).

Results. All participants concluded all tasks, even if one of them required suggestions for properly
defining the behaviour of the new object in T3. Figure 11 shows the differences in the completion
time and perceived effort (measured through the SMEQ [40] questionnaire) between the tasks.
We expected T3 to be the most difficult among the tasks since it requires the development of a
dedicated class in C#, and this is clearly confirmed by the results. T1 and T2 took a comparable
amount of time, while T3 required longer.
The effort reported by participants through the SMEQ [40] follows a similar trend. T1 and T2

received similar evaluations, and T3 required a higher effort as expected (see Figure 11, right part).
According to the labelling of the difficult levels in [40], the median for both T1 and T2 sets this
tasks between “Not very hard to do” and “A bit hard to do”, closer to the lower level. T3 is instead
near the “A bit hard to do” level. The high standard deviation reflects some difficulties encountered
in this task by some participants. We clarify better this point through the debriefing comments.

Such results show that exploiting existing components in the plugin for inserting configuration
points requires little additional time and effort. Writing an extension is more difficult but less
frequent. Nevertheless, the time and effort required seem reasonable for underlying task complexity.

Following the guidelines for evaluating HCI toolkit research [25], we included questions assessing
the perceived usefulness of the approach and its usability in terms of templates development. We
collected the participants’ opinions on different statements related to the utility and the difficulty
of the approach before and after completing the tasks for highlighting differences between the
expectation and the actual experience. Figure 12 (top part) lists the statements we included in the
questionnaire and the rating pre (blue) and post-task (red). The two sets of answers are pretty
similar. We did not register any significant difference in both the usefulness and the difficulty
questions. This means that, overall, the plugin met the participants’ expectations. However, we
notice that the post-task assessment of the statement “I will use the plugin for creating templates”
follows a decreasing trend, while we notice an increased perception of the overall utility after the

Valentino Artizzu, et al.

Fig. 12. Participants assessment of the usefulness, difficulty and overall usability of the approach. They
assessed the usefulness and the difficulty before and after completing the task. Values are in a 1 to 7 Likert
scale.

usage. This means that our participants appreciated the idea and its implementation, but some of
them reconsidered a possible direct involvement in the envisioned meta-design process. Among
the questions related to the expected and perceived difficulty, we notice a decreasing trend for the
statement about the plugin extension. This is related to the difficulties encountered in T3 that we
already mentioned, and we will discuss when reporting on the debriefing.

Finally, the items about the overall usability of the approach (see Figure 12, bottom part) received
a very good assessment, showing an overall appreciation of the plugin support. They included
statements about the ease of use, effectiveness and satisfaction.

Debriefing. We collected the participants’ feedback at the end of each session, which is helpful
for understanding strengths and weaknesses in our approach and for improving it in the next
iterations.
We received both positive and negative comments about the project from all participants and

suggestions for improving it. Generally speaking, the project received positive feedback concerning
its ease of use, internal structure and taxonomy, usefulness, extensibility and reusability. One
participant stated that the idea could be very useful for avoiding the redefinition of standard
behaviours in an end-user development setting and even in VR environments created by experts. A
second participant, who was already familiar with ECA rules, underlined the ease of use of the
component-based approach for defining configuration points. In addition, he considers successful
the representation of the rule in natural language for involving users without programming
experience. Another participant highlighted that the TB requires skills spread over different roles in
a typical game development organization, including game developers, level designers and 3D artists.
We agree in general with this comment, and we would need further research for understanding
whether the plugin is effective across these three roles, especially considering people acquainted
only with 3D modelling.
Negative feedback comments expressed some confusion in the taxonomy structure and a per-

ceivable initial learning curve to get used with the object categorization. Indeed, some taxonomy
elements have names recalling similar concepts, and the difference between them needs some
learning effort. For instance, a participant spent some time in grasping the difference between

the Behaviour (base class for all behaviours identifiable across the different categories of objects),
Interactable (a Behaviour associated with something a character can interact with) and Button (a
perceivable object that a character can push), since they looked similar to him (e.g., a button should
be interactable and it must have a behaviour). In general, assigning names is not easy. But it is also
true that we define similar configurations in different ways in many toolkits. In ours, something
that logically corresponds to a button may be defined through the object in the taxonomy, but also
assigning an Interactable behaviour to objects that belong to a different category (e.g., a chair). The
difference is, as explained in Section 3.1, the physical appearance. If it resembles something that
we can push, we consider it a Button, otherwise it belongs to a different object category, and we
associate an Interactable behaviour. Both ways are correct depending on the situation.
Task 3 also highlighted difficulties in understanding the extension process. In particular, the

information included in the code documentation and the descriptive material we created for the
test was not enough for one participant. He expected some startup code, such as the skeleton of
a dummy extension, to fill up with custom code. He found the material we provided particularly
unhelpful, and he stated that reconstructing the process from such descriptions required too much
effort. We agree that including additional information and startup code would ease the task for
TBs, and we will complete the documentation in further versions of the plugin. However, the issue
seems more related to the documentation provided than the EUD approach itself. Therefore, even
if the difficulty is relevant, we do not consider it a barrier to using the plugin.

Some participants suggested to improve the current documentation with more examples for our
future developments, even in the natural language rules part. This could help the TB to understand
how a EUDev specifies rules and how s/he can use the plugin. One of them proposed creating a
debug mode to test the rule set in play mode, reporting the TB when an action is triggered using
a console in the game tab of Unity. We agree that this is useful, but it is currently beyond the
scope of the proof-of-concept implementation. Another participant requested more help from the
development environment while formalizing new actions for the EUDev to guarantee the expected
syntax for the rules through an auto-completion feature. Again, it would be very nice to have it in
a product, but it goes beyond our proof-of-concept.

7 DISCUSSION
In this section, we summarise the paper’s contribution, the lesson learned and the limitations of the
work. We introduced an end-user development approach for supporting the configuration of a VR
environment by users without skills in programming and/or 3D modelling. The approach leverages
on meta-design [2, 11, 15], introducing the hybrid role of the EUDev, that is, both a designer and a
user. The EUDev configures the templates created by TB, providing customised VR experiences for
users who consume the final VR content. Having defined the roles, we presented an engineering
solution for supporting the EUD approach, based on natural language Event-Condition Action rules,
defined by EUDevs. We describe the high-level actions on top of a taxonomy defining categories of
virtual objects. We also provide a solution for executing rules at runtime without rebuilding the VR
environment after the configuration by EUDevs.
Besides the overall approach, we discussed a proof-of-concept implementation in Unity3D. Its

peculiarity relies on extensibility, which mitigates possible shortcomings in the taxonomy of 3D
object modelling. By including some custom annotations, TBs can provide further actions and
object categories to EUDevs.
To demonstrate our claims, we provided a validation of the approach. The plugin discussed in

the paper is a toolkit enabling TB to create templates. Properly validating a toolkit in HCI research
is a debated topic in the community. An excellent summary of the documented techniques in the
literature is available in [25]. Following their categorization, we validated through demonstration

Valentino Artizzu, et al.

and a user study. The demonstration, discussed in Section 5, shows that the current proof-of-concept
implementation of the approach can support the definition of templates for two different use cases,
providing support for creating substantially different experiences through rules. The user study
shows that potential TBs consider the plugin (and the overall approach) useful and usable, requiring
a reasonable effort for defining configuration points. From the discussion with participants, we
identified points where they require improvement, especially in the documentation of the extension
mechanism.

The paper has, of course, limitations. First, we focused on the approach definition and the support
provided to TBs. In the current state of our research, we cannot claim the usability of the rule
language, the effort required by EUDevs for configuring a VR environment or the effectiveness
of the immersive rule-authoring interface. While we are positive that the rule-based approach
may have comparable effectiveness documented in other domains (e.g., for IoT, see Section 2.2),
further research is required. In particular, we need to investigate the differences in rule authoring
through desktop or immersive interfaces. In an immersive mode, EUDevs would avoid authoring
and test cycles, requiring to put on and take off the HMD. In contrast, creating many rules in the
immersive mode may be tedious, so there is space for hybrid solutions. However, no configurations
are possible without the VR environment support, and this paper is the first step towards that goal.

A second point to discuss, which is somehow connected with the previous, is the limited scope of
the object taxonomy. Our goal was not to provide complete modelling of all the possible categories
of VR objects but only include commonly used definitions that may be reused across different
templates, using our experience in creating VR environments and looking at existing categorizations.
This allows TBs to start with a reasonable base. Otherwise, they would need to redefine the whole
rule language. However, we expect different domains to have different needs in expressing rules. So,
we included an extension mechanism that allows such adaptation. We are persuaded that searching
for a complete taxonomy in all templates is not a realistic goal. We may find arguments in favour
of this having a deeper look at the literature references discussed in Section 2.2, where it is clear
that we have no shared definition even of the rule format, which are adapted in different variants
for different domains.

Finally, the last limitation that requires discussion is the small number of participants in the user
study. This is mainly due to the difficulty in recruiting people corresponding to the TB profile, who
are experts busy in their own development tasks. In addition, for keeping short the time required
for each evaluation session, we included very specific tasks and not, e.g., creating an entire template,
again to make the recruitment feasible. We are aware that more in-depth evaluations would be
required, even outside the lab environment, but, as discussed in [25], this is seldom possible in
evaluating research toolkit prototypes.

8 CONCLUSION AND FUTUREWORK
This paper introduced an end-user development approach for fostering a VR environment’s con-
figuration by end users, exploiting rules in natural language and relying on templates created by
experts. The approach advances state of the art going beyond the construction of static VR scenes
for EUDevs. We provided insights on the configuration ceiling through two case studies and on the
usability and utility as perceived by template developers. Future work will focus on defining an
effective interface supporting EUDevs in creating rules, exploiting conversational interaction and a
more usable graphical representation. In addition, we plan to assess the rule-language definition
through further evaluations with end users.

ACKNOWLEDGMENTS
The work was partially supported by the ECARules4All project, which has received funding from
the European Union’s Horizon 2020 research and innovation programme through the XR4All H2020
project with grant agreement No 825545.

REFERENCES
[1] Telmo Adão, Luís Pádua, Miguel Fonseca, Luís Agrellos, Joaquim J. Sousa, Luís Magalhães, and Emanuel Peres. 2018.

A rapid prototyping tool to produce 360° video-based immersive experiences enhanced with virtual/multimedia
elements. Procedia Computer Science 138 (2018), 441–453. https://doi.org/10.1016/j.procs.2018.10.062 CENTERIS
2018 - International Conference on ENTERprise Information Systems / ProjMAN 2018 - International Conference on
Project MANagement / HCist 2018 - International Conference on Health and Social Care Information Systems and
Technologies, CENTERIS/ProjMAN/HCist 2018.

[2] Carmelo Ardito, Paolo Buono, Maria Francesca Costabile, Rosa Lanzilotti, Antonio Piccinno, and Li Zhu. 2015. On the
transferability of a meta-design model supporting end-user development. Universal Access in the Information Society
14, 2 (01 Jun 2015), 169–186. https://doi.org/10.1007/s10209-013-0339-7

[3] Raffaele Ariano, Marco Manca, Fabio Paternò, and Carmen Santoro. 2022. Smartphone-based augmented reality for
end-user creation of home automations. Behaviour & Information Technology 0, 0 (2022), 1–17. https://doi.org/10.1080/
0144929X.2021.2017482

[4] Barbara Rita Barricelli and Stefano Valtolina. 2017. A visual language and interactive system for end-user development
of internet of things ecosystems. Journal of Visual Languages & Computing 40 (2017), 1–19. https://doi.org/10.1016/j.
jvlc.2017.01.004 Semiotics, Human-Computer Interaction and End-User Development.

[5] Ivan Blečić, Sara Cuccu, Filippo Andrea Fanni, Vittoria Frau, Riccardo Macis, Valeria Saiu, Martina Senis, Lucio Davide
Spano, and Alessandro Tola. 2021. First-Person Cinematographic Videogames: Game Model, Authoring Environment,
and Potential for Creating Affection for Places. J. Comput. Cult. Herit. 14, 2, Article 18 (may 2021), 29 pages. https:
//doi.org/10.1145/3446977

[6] Will Brackenbury, Abhimanyu Deora, Jillian Ritchey, Jason Vallee, Weijia He, Guan Wang, Michael L. Littman, and
Blase Ur. 2019. How Users Interpret Bugs in Trigger-Action Programming. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New
York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300782

[7] Z. Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. Soteria: Automated IoT Safety and Security Analysis. In
2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA, 147–158. https:
//www.usenix.org/conference/atc18/presentation/celik

[8] Mengyu Chen, Marko Peljhan, and Misha Sra. 2021. EntangleVR: A Visual Programming Interface for Virtual
Reality Interactive Scene Generation. In Proceedings of the 27th ACM Symposium on Virtual Reality Software and
Technology (Osaka, Japan) (VRST ’21). Association for Computing Machinery, New York, NY, USA, Article 19, 6 pages.
https://doi.org/10.1145/3489849.3489872

[9] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2019. Empowering End Users in Debugging Trigger-
Action Rules. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300618

[10] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2019. A high-level semantic approach to End-User
Development in the Internet of Things. International Journal of Human-Computer Studies 125 (2019), 41–54. https:
//doi.org/10.1016/j.ijhcs.2018.12.008

[11] M.F. Costabile, D. Fogli, P. Mussio, and A. Piccinno. 2005. A meta-design approach to end-user development. In 2005
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05). 308–310. https://doi.org/10.1109/
VLHCC.2005.7

[12] Joëlle Coutaz and James L. Crowley. 2016. A First-Person Experience with End-User Development for Smart Homes.
IEEE Pervasive Computing 15, 2 (2016), 26–39. https://doi.org/10.1109/MPRV.2016.24

[13] Giuseppe Desolda, Carmelo Ardito, and Maristella Matera. 2017. Empowering End Users to Customize Their Smart
Environments: Model, Composition Paradigms, and Domain-Specific Tools. ACM Trans. Comput.-Hum. Interact. 24, 2,
Article 12 (apr 2017), 52 pages. https://doi.org/10.1145/3057859

[14] Filippo Andrea Fanni, Martina Senis, Alessandro Tola, Fabio Murru, Marco Romoli, Lucio Davide Spano, Ivan Blečić,
and Giuseppe Andrea Trunfio. 2019. PAC-PAC: End User Development of Immersive Point and Click Games. In
End-User Development, Alessio Malizia, Stefano Valtolina, Anders Morch, Alan Serrano, and Andrew Stratton (Eds.).
Springer International Publishing, Cham, 225–229.

[15] G. Fischer, E. Giaccardi, Y. Ye, A. G. Sutcliffe, and N. Mehandjiev. 2004. Meta-Design: A Manifesto for End-User
Development. Commun. ACM 47, 9 (sep 2004), 33–37. https://doi.org/10.1145/1015864.1015884

https://doi.org/10.1016/j.procs.2018.10.062
https://doi.org/10.1007/s10209-013-0339-7
https://doi.org/10.1080/0144929X.2021.2017482
https://doi.org/10.1080/0144929X.2021.2017482
https://doi.org/10.1016/j.jvlc.2017.01.004
https://doi.org/10.1016/j.jvlc.2017.01.004
https://doi.org/10.1145/3446977
https://doi.org/10.1145/3446977
https://doi.org/10.1145/3290605.3300782
https://www.usenix.org/conference/atc18/presentation/celik
https://www.usenix.org/conference/atc18/presentation/celik
https://doi.org/10.1145/3489849.3489872
https://doi.org/10.1145/3290605.3300618
https://doi.org/10.1016/j.ijhcs.2018.12.008
https://doi.org/10.1016/j.ijhcs.2018.12.008
https://doi.org/10.1109/VLHCC.2005.7
https://doi.org/10.1109/VLHCC.2005.7
https://doi.org/10.1109/MPRV.2016.24
https://doi.org/10.1145/3057859
https://doi.org/10.1145/1015864.1015884

Valentino Artizzu, et al.

[16] Fungus Games. 2020. Fungus. Retrieved January 3, 2021 from https://fungusgames.com
[17] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, and Design Patterns. 1995. Elements of Reusable

Object-Oriented Software. Design Patterns. massachusetts: Addison-Wesley Publishing Company (1995).
[18] Franca Garzotto, Mirko Gelsomini, Vito Matarazzo, Nicolò Messina, and Daniele Occhiuto. 2017. XOOM: An End-

User Development Tool for Web-Based Wearable Immersive Virtual Tours. InWeb Engineering, Jordi Cabot, Roberto
De Virgilio, and Riccardo Torlone (Eds.). Springer International Publishing, Cham, 507–519.

[19] Giuseppe Ghiani, Marco Manca, Fabio Paternò, and Carmen Santoro. 2017. Personalization of Context-Dependent
Applications Through Trigger-Action Rules. ACM Trans. Comput.-Hum. Interact. 24, 2, Article 14 (apr 2017), 33 pages.
https://doi.org/10.1145/3057861

[20] Juan Manuel González-Calleros, Jean Vanderdonckt, and Jaime Muñoz-Arteaga. 2009. A Structured Approach to
Support 3D User Interface Development. In 2009 Second International Conferences on Advances in Computer-Human
Interactions. 75–81. https://doi.org/10.1109/ACHI.2009.14

[21] Google. 2017. Google Poly. Retrieved January 3, 2021 from https://poly.google.com/
[22] T.R.G. Green and M. Petre. 1996. Usability Analysis of Visual Programming Environments: A ‘Cognitive Dimensions’

Framework. Journal of Visual Languages & Computing 7, 2 (1996), 131–174. https://doi.org/10.1006/jvlc.1996.0009
[23] Kai-Hsiang Hsu, Yu-Hsi Chiang, and Hsu-Chun Hsiao. 2019. SafeChain: Securing Trigger-Action Programming

From Attack Chains. IEEE Transactions on Information Forensics and Security 14, 10 (2019), 2607–2622. https:
//doi.org/10.1109/TIFS.2019.2899758

[24] Zapier Inc. 2022. Zapier. https://zapier.com [Online; accessed 17-February-2022].
[25] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg, and Saul Greenberg. 2018. Evaluation

Strategies for HCI Toolkit Research. Association for Computing Machinery, New York, NY, USA, 1–17. https://doi.org/
10.1145/3173574.3173610

[26] Gun A. Lee and Gerard J. Kim. 2009. Immersive authoring of Tangible Augmented Reality content: A user study.
Journal of Visual Languages & Computing 20, 2 (2009), 61–79. https://doi.org/10.1016/j.jvlc.2008.07.001

[27] Gun A. Lee, Gerard J. Kim, and Mark Billinghurst. 2005. Immersive Authoring: What You EXperience Is What You Get
(WYXIWYG). Commun. ACM 48, 7 (jul 2005), 76–81. https://doi.org/10.1145/1070838.1070840

[28] Chieh-Jan Mike Liang, Lei Bu, Zhao Li, Junbei Zhang, Shi Han, Börje F. Karlsson, Dongmei Zhang, and Feng Zhao.
2016. Systematically Debugging IoT Control System Correctness for Building Automation. In Proceedings of the 3rd
ACM International Conference on Systems for Energy-Efficient Built Environments (Palo Alto, CA, USA) (BuildSys ’16).
Association for Computing Machinery, New York, NY, USA, 133–142. https://doi.org/10.1145/2993422.2993426

[29] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. 2006. End-User Development: An Emerging
Paradigm. In End User Development, Henry Lieberman, Fabio Paternò, and Volker Wulf (Eds.). Springer Netherlands,
Dordrecht, 1–8. https://doi.org/10.1007/1-4020-5386-X_1

[30] Adam Martin. 2007. Entity Systems Are the Future of MMOG Development–Part 1. T= Machine (2007). http://t-
machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/

[31] Paulo R. C. Mendes, Álan L. V. Guedes, Daniel de S. Moraes, Roberto G. A. Azevedo, and Sérgio Colcher. 2020. An
Authoring Model for Interactive 360 Videos. In 2020 IEEE International Conference on Multimedia Expo Workshops
(ICMEW). 1–6. https://doi.org/10.1109/ICMEW46912.2020.9105958

[32] Zeno Menestrina and Antonella De Angeli. 2017. End-User Development for Serious Games. Springer International
Publishing, Cham, 359–383. https://doi.org/10.1007/978-3-319-60291-2_14

[33] Mario Montagud, Pilar Orero, and Anna Matamala. 2020. Culture 4 all: accessibility-enabled cultural experiences
through immersive VR360 content. Personal and Ubiquitous Computing 24, 6 (01 Dec 2020), 887–905. https://doi.org/
10.1007/s00779-019-01357-3

[34] Mozilla. 2022. Mozilla Hubs. https://hubs.mozilla.com [Online; accessed 17-February-2022].
[35] Mozilla. 2022. Mozilla Spoke. https://hubs.mozilla.com/spoke [Online; accessed 17-February-2022].
[36] Michael Nebeling, Katy Lewis, Yu-Cheng Chang, Lihan Zhu, Michelle Chung, Piaoyang Wang, and Janet Nebeling.

2020. XRDirector: A Role-Based Collaborative Immersive Authoring System. Association for Computing Machinery, New
York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376637

[37] Michael Nebeling and Katy Madier. 2019. 360proto: Making Interactive Virtual Reality & Augmented Reality Prototypes
from Paper. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300826

[38] Ottifox. 2018. Ottifox. Retrieved January 3, 2021 from https://ottifox.com/index.html
[39] Fabio Paternò and Carmen Santoro. 2019. End-user development for personalizing applications, things, and robots.

International Journal of Human-Computer Studies 131 (2019), 120–130. https://doi.org/10.1016/j.ijhcs.2019.06.002
50 years of the International Journal of Human-Computer Studies. Reflections on the past, present and future of
human-centred technologies.

https://fungusgames.com
https://doi.org/10.1145/3057861
https://doi.org/10.1109/ACHI.2009.14
https://poly.google.com/
https://doi.org/10.1006/jvlc.1996.0009
https://doi.org/10.1109/TIFS.2019.2899758
https://doi.org/10.1109/TIFS.2019.2899758
https://zapier.com
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1016/j.jvlc.2008.07.001
https://doi.org/10.1145/1070838.1070840
https://doi.org/10.1145/2993422.2993426
https://doi.org/10.1007/1-4020-5386-X_1
http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/
http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/
https://doi.org/10.1109/ICMEW46912.2020.9105958
https://doi.org/10.1007/978-3-319-60291-2_14
https://doi.org/10.1007/s00779-019-01357-3
https://doi.org/10.1007/s00779-019-01357-3
https://hubs.mozilla.com
https://hubs.mozilla.com/spoke
https://doi.org/10.1145/3313831.3376637
https://doi.org/10.1145/3290605.3300826
https://ottifox.com/index.html
https://doi.org/10.1016/j.ijhcs.2019.06.002

[40] Jeff Sauro and Joseph S. Dumas. 2009. Comparison of Three One-question, Post-task Usability Questionnaires. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Boston, MA, USA) (CHI ’09). ACM, New
York, NY, USA, 1599–1608. https://doi.org/10.1145/1518701.1518946

[41] A. Steed and M. Slater. 1996. A dataflow representation for defining behaviours within virtual environments. In
Proceedings of the IEEE 1996 Virtual Reality Annual International Symposium. 163–167. https://doi.org/10.1109/VRAIS.
1996.490524

[42] Tuukka M. Takala. 2014. RUIS: A Toolkit for Developing Virtual Reality Applications with Spatial Interaction. In
Proceedings of the 2nd ACM Symposium on Spatial User Interaction (Honolulu, Hawaii, USA) (SUI ’14). Association for
Computing Machinery, New York, NY, USA, 94–103. https://doi.org/10.1145/2659766.2659774

[43] Andrei Torres, Christopher Carmichael, William Wang, Matthew Paraskevakos, Alvaro Uribe-Quevedo, Paul Giles,
and Jamie Lee Yawney. 2020. A 360 Video Editor Framework for Interactive Training. In 2020 IEEE 8th International
Conference on Serious Games and Applications for Health (SeGAH). 1–7. https://doi.org/10.1109/SeGAH49190.2020.
9201707

[44] Company Tvori. 2020. Tvori. https://tvori.co/ [Online; accessed 17-February-2022].
[45] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah Mennicken, Noah Picard, Diane Schulze, and

Michael L. Littman. 2016. Trigger-Action Programming in the Wild: An Analysis of 200,000 IFTTT Recipes. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI ’16).
Association for Computing Machinery, New York, NY, USA, 3227–3231. https://doi.org/10.1145/2858036.2858556

[46] Vv.Aa. 2021. Virtual Reality Market Research Report. Technical Report. Fortune Business Insights.
[47] Telmo Zarraonandia, Paloma Díaz, Ignacio Aedo, and Alvaro Montero. 2016. Inmersive End User Development for

Virtual Reality. In Proceedings of the International Working Conference on Advanced Visual Interfaces (Bari, Italy) (AVI
’16). Association for Computing Machinery, New York, NY, USA, 346–347. https://doi.org/10.1145/2909132.2926067

[48] Telmo Zarraonandia, Paloma Díaz, Alvaro Montero, and Ignacio Aedo. 2016. Exploring the Benefits of Immersive
End User Development for Virtual Reality. In Ubiquitous Computing and Ambient Intelligence, Carmelo R. García,
Pino Caballero-Gil, Mike Burmester, and Alexis Quesada-Arencibia (Eds.). Springer International Publishing, Cham,
450–462.

[49] Lefan Zhang, Weijia He, Jesse Martinez, Noah Brackenbury, Shan Lu, and Blase Ur. 2019. AutoTap: Synthesizing and
Repairing Trigger-Action Programs Using LTL Properties. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). 281–291. https://doi.org/10.1109/ICSE.2019.00043

[50] Lei Zhang and Steve Oney. 2020. FlowMatic: An Immersive Authoring Tool for Creating Interactive Scenes in Virtual
Reality. Association for Computing Machinery, New York, NY, USA, 342–353. https://doi.org/10.1145/3379337.3415824

https://doi.org/10.1145/1518701.1518946
https://doi.org/10.1109/VRAIS.1996.490524
https://doi.org/10.1109/VRAIS.1996.490524
https://doi.org/10.1145/2659766.2659774
https://doi.org/10.1109/SeGAH49190.2020.9201707
https://doi.org/10.1109/SeGAH49190.2020.9201707
https://tvori.co/
https://doi.org/10.1145/2858036.2858556
https://doi.org/10.1145/2909132.2926067
https://doi.org/10.1109/ICSE.2019.00043
https://doi.org/10.1145/3379337.3415824

Valentino Artizzu, et al.

A APPENDIX: VR OBJECT TAXONOMY
In this appendix, we describe the high-level types included in the VR object taxonomy for building
environments templates. The appendix completes the general overview provided in Section 3.1
with a detailed description of the different categories included in the taxonomy. We describe the
state of Objects and Behaviours using a simplified set of base types, summarised in Table 2.

Objects and Behaviours have a set of attributes depicting the state and a set of actions representing
the operations they can perform (or receive, in case of passive actions). In the following, we list the
state description and the actions for each one of the elements in the taxonomy.
An Object can be a Character, a Scene, an Environment, a Prop, a Vehicle or an Interaction. In

general, each element belonging to the Object category has a position attribute, and two flags: one
for controlling its visibility and the second for setting it as active or not. In this way the EUDev
controls whether the object is visible or not and if someone or something can interact with it.
We use a Character object to represent an animal, a humanoid, a robot or a generic creature. A

character can be autonomous or controlled by the user of the VR environment (the playing flag).
A Character, can be further subdivided in several sub-categories, according to the Animal or

not-Animal classification. Figure 13 shows the actions and the state variables associated with the
Character sub-categories.

Environment objects represent inanimated elements that configure the VR scene, like buildings,
vegetation etc., or elements that decorate or furnish a room. Figure 14 shows the actions and the
state variables associated with the Environment sub-categories.

In the Prop category, we represent generic objects that can be placed in a scene and manipulated
by characters. We have several possible sub-categories in this case. However, in our definition,
we decided to abstract the representation keeping the groups rather abstract, while delegating
a more precise indication of the object type to type aliasing or extensions. Figure 15 depicts the
categorization. We provided deeper modelling for the Weapons given their fundamental role in
most video games, which we expect will also replicate in EUD VR environments.
It is worth pointing out that Prop objects contain actions that belong to them from a software

point of view, while the EUDev would rather see them as performed by a character. We call such
actions passive. For instance, please consider a Clothing object. Keeping the implementation of the

EUDev Type Definition

Boolean A boolean value.We support equivalent labels for true and false (e.g., yes/no,
on/off etc.).

Color A pair including the color name and its hex-code
Float A number having decimal places
Integer An integer number.
Position Coordinates of a position in the 3D world.
Path An ordered list of positions in the 3D world.
Identifier A human-readable representation of a reference to an object in the scene.

We will render it in natural language using the pair <Type, Name> (e.g., the
Robot Daitarn-3).

Rotation Euler angles in degrees.
Text A string of text.
Time A time interval (days, hours, minutes, seconds).

Table 2. EUDev data types for the object status variables

Fig. 13. Class diagram for the Character sub-category.

Fig. 14. Class diagram for the Environment sub-category.

wear action in the Clothing and not in the Character class, allows decoupling the basic actions
of a character from those involving other objects. Otherwise, we would break the separation of
concerns principle, and the character would become the class defining the large majority of the
system. However, from the EUDev point of view, the best action description in natural language is
“the character wears the clothing” and not “the clothing is weared by the character”. So, passive actions
in the class representation use the parameter as the subject of the sentence in natural language
(see Section 3.2).

A Scene represents a setting in the VR environment a user can visit entirely in a continuous way,
i.e., without teleportation. We can associate it to a videogame level: when the level changes, the
scene changes too. It defines passive actions for entering and leaving the scene.
The Vehicle category represents, in an abstract way, all the vehicles TB can place in scene. We

distinguish them according to the element they support travelling on (air, land, sea, space). Figure 16
depicts the categorization.

Valentino Artizzu, et al.

Fig. 15. Class diagram for the Prop sub-category. Actions beginning with an underscore are passive.

Fig. 16. Class diagram for the Vehicle sub-category.

Fig. 17. Class diagram for the Interaction sub-category.

Fig. 18. Class diagram for the Behaviour category.

The Interactions category contains all the elements allowing some interaction with the scene and
its objects. The main point that distinguishes them from the Behaviour elements is that a typical
user would perceive them as physical entities of their own, which would exist independently from
other objects. Instead, a behaviour adds the ability of e.g., counting, opening or highlighting other
objects. For instance, we consider two multimedia items such as an advertisement video and a song
played by a juke-box. We model the advertisement as a Video interactive element (i.e., belonging to
the interaction category) since the user of the VR environment perceives the 2D plane projecting
the video. The song instead has no physical presence of its own, but the user associates it to the
juke-box, which is its source and the object modified by the Sound behaviour. In this way, a TB
can model objects having multiple behaviours, for instance, creating a juke-box that plays songs
and highlights when the user interacts with it. Figure 17 lists all the interaction objects and the
associated actions.

Given their lack of physical presence of their own, the Behaviour does not extendObject. Figure 18
depicts the list of available behaviours and the actions they add to the associated objects. It is worth
pointing out that adding a behaviour to an object increases the number of actions that the instance
supports in the description of the rules in natural language (see Section 3.2).

	Abstract
	1 Introduction
	2 Related Work
	2.1 End-user definition of VR environments
	2.2 Rule-based approaches in End-User Development

	3 An End-User Development Approach for Configuring Virtual Reality Environments
	3.1 The VR Object Taxonomy
	3.2 The EUD Rule Language
	3.3 The Rule Execution Support

	4 Proof-of-Concept Implementation
	4.1 The ECALibrary
	4.2 The Rule Engine
	4.3 Adding Configuration Points to a Scene
	4.4 Configuring a Template

	5 Development Case Studies
	5.1 Case Study 1: Virtual Shop
	5.2 Case Study 2: Virtual Museum

	6 Developer Evaluation
	7 Discussion
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Appendix: VR Object Taxonomy

