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Abstract
The use of elastic deformation of straight or flat structural components for achieving complex 3D shapes has acquired attention
from recent computational design works, particularly in architectural geometry. The so-called bending-active structures are
built by deforming and restraining the components mutually to form a stable configuration. While the manufacturing of com-
ponents from flat raw material and their assembly are simple and inexpensive, the complexity lies in the design phase, in which
computational tools are required to predict the deformation and forces under a prescribed form-finding load or displacement.
Currently, there is a scarcity of open and efficient tools that hinder the design of bending-active structures. This paper proposes
and validates an open-source computational tool for predicting the static equilibrium of general bending-active structures in
the form of a network of elements using the dynamic relaxation method. We apply our tool to various real-world examples and
compare the results to a commercial FEM solver. The proposed tool shows accuracy and good time performance, making it a
significant addition to the available open-source structural engineering toolkit.

1. Introduction

Art, architecture, and fabrication research efforts are spent on au-
tomating design and processes. This transition is driven by algo-
rithms that support the designer in making choices and exploring
several options within the design domain, and communicating man-
ufacturing instructions to computer numerical controlled machines.

Classic workflows, in which bespoke and sequential steps are ap-
plied to a specific case study or product, have been replaced by au-
tomated workflows based on generative design and optioneering, in
which the singularity of the product and its customization are mate-
rialized through fabrication-aware techniques and generic methods
of production. In these latter, the fabrication drastically influences
the design and opens the way for new possibilities and aesthetic ex-
pression. At the same time, it raises novel needs for tools that can
manage material usage and run physically plausible simulations.

To produce complex 3D objects and surfaces, the active-bending
technique that has been known since ancient times has been revis-
ited in light of the current trends. Elements and plates, which can be
cut from flat sheets of material or printed on a plate, are elastically
bent and then assembled to form a self-stable shape.

In this context, all the components undergo large deformations.
Simulations are fundamental to check whether this deformation is
feasible and to assess the accuracy of the assembly of reaching
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a target shape. The problem can be solved through sophisticated
and accurate commercial FEM software packages; however, they
are not available to the general user. Moreover, they are hard to
use and customize, and are computationally intensive. Indeed, such
software is used for detailed analyses and safety checks. Whereas,
algorithms routines need efficient and customized tools.

The main contribution of this work is the implementation of an
open-source, fast and accurate simulation tool that uses the Dy-
namic Relaxation Method (DRM) to solve large-deformation equi-
librium problems. This tool targets networks of elements, which
can form bending active structures of any shape. For speeding
up the required computations we have reformulated the math in
[SOA20]. Our implementation in C++ along with our code op-
timization discussed in section 4.4 is orders of magnitude faster,
compared to the Matlab implementation of Sakai et al. of [SOA20].
After a brief research review, we introduce the theoretical back-
ground of the method. Then, we provide implementation details
and optimization strategies. We use our tool to showcase several
results obtained on real-world examples which we compare to a
commercial FEM solver.

2. Related work

2.1. Bending-active structures

Realizing complex curved shapes is a challenging task in manufac-
turing processes. Several techniques can be used, such as molding,
heat- or cold-bending, plastic deformation, etc. They are expensive
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since they require templates and formworks, which are not fully
reusable, especially if the curvature varies punctually.

One of the most interesting and cheapest strategies to tackle
these issues is represented by the bending-active technique
[LAGK13]. Hence, the structure is segmented into components that
are induced in a deformed state by bending and mutually combined
to achieve a stable configuration. However, this process poses sev-
eral limitations because the shape of these form-active structures
depends on the amount of stress the elements can attain, which
in turn depends on their geometry and on their material proper-
ties [KDH*13]. The most diffused bending-active structures are the
post-formed grid shells, namely flat grids of crossing elements that
are pushed from the boundaries to form a shell shape [DKZ*15;
PKI*19].

Incredibly-lightweight and geometrically-complex objects can
be realized by exploring various materials [GHB13; Lie14; Cro18].
By combining this forming technique with novel digital fabrica-
tion means, the spectrum of possible shapes and components can
be further increased [NT13; LK15; TBM*20], so that nowadays
the bending-active technique is increasingly used in challenging
projects [La 17; MPI*18; LMP*20].

2.2. Dynamic Relaxation Method (DRM) as a form-finding
and analysis tool

Form-finding describes the process of finding a shape of a structure
for which forces are in equilibrium with respect to some applied
stress [VB12]. Form-finding is primarily used in both passive and
form-active structures such as grid shells, cable-nets, or tensegri-
ties. Different numerical methods have been proposed for finding
such an equilibrium state.

The DRM is an explicit integration method for pseudo-
dynamically solving static problems of structures. The main idea
behind it is to use the displacements of the nodes for tracking how
the structure deforms. The motion of the structure is artificially
damped in order to reach a static equilibrium state.

The method was initially proposed and used on membrane struc-
tures [Day65; Bar99] and later on elastic grid shells. Then, different
frameworks were proposed which use a varying number of degrees
of freedom (dof) for the nodes of the structure. Nodes of 3 transla-
tional dof were proposed in [AB01] for modelling tensegrity struc-
tures. The authors in [DZK16] use a 3-dof element model which
is able to handle anisotropic cross section in bending active struc-
tures. The authors in [LTDC17] use a 4-dof node for descretizing
the Kirchoff element theory with which they describe the centerline
position of the elements and the rotation of the cross section around
the centerline. A line of work uses the co-rotational element formu-
lation which models the element elements using its two endpoints
[Kre09; LK11; SP15]. The endpoints have 6 dof which are used to
describe the deformed shape of a element.

Another recent work that uses the co-rotational approach is
[SOA20]. Building on [Kre09] the authors use 3 dof for describing
the displacements of the nodes and additionally 3 dof for describ-
ing rotations at elements’ endpoints using the normal vector of the
underlying surface. The computational tool presented in this paper
is based on [SOA20].

3. Overview

The proposed method is based on explicitly integrating the equa-
tions of motion after an actuation load is applied to an initially flat-
laying structure for reaching the static-equilibrium state. Since in-
termediate states are not of interest, the goal is to maximize conver-
gence speed, and thus the equations are solved in a pseudo-dynamic
manner. This means that quantities such as the mass of the struc-
ture are not realistic and are solely set for aiding convergence. An-
other essential fictitious component of this method is the so called
kinetic damping which removes kinetic energy from the structure
whenever a local maxima is detected. This approach damps oscil-
lations of the structure around the equilibrium point enabling that
way convergence. A high-level overview of the DRM-based algo-
rithm implemented in this work is presented in Algorithm 11.

We begin by initializing the state of the structure (line 1). During
this step, we initialize quantities such as initial positions, node ve-
locities, kinetic energy, etc. Then, the DRM algorithm enters a loop
until a static equilibrium state is reached (lines 2-11). This loop is
composed of 3 steps which also form the essence of the algorithm.
In line 3, we execute a DRM step that displaces the structure based
on the current residual forces after a small time-step Dt . We go into
more details regarding what the DRM step involves in section 4.2.

In order to speed-up convergence, we use the so-called kinetic
damping. Kinetic damping is a method that removes energy from
the structure every time the maximum in kinetic energy has been
reached. The core idea behind kinetic damping is that since the
structure oscillates around the static equilibrium, it will have its
maximum kinetic energy at the equilibrium state. Since our goal is
uniquely to reach the static equilibrium, without caring about the
intermediate states, whenever the structure reaches a maximum in
kinetic energy, the velocities of all its nodes are set to zero. We dis-
cuss more details regarding our kinetic damping approach in sec-
tion 4.3. Before the end of each iteration (line 10) we decrease the
current time-step using a constant ξ < 1.0. The purpose is to avoid
overshooting the static equilibrium after the next iteration.

Algorithm 1: The implemented DRM algorithm.
Input: Structure, Simulation scenario
Output: Static equilibrium of the structure under the

defined simulation scenario
1 Initialization;
2 while Static equilibrium of structure not reached do
3 Compute a DRM step;
4 if Structure’s kinetic energy is at a local maxima then
5 Apply kinetic damping;
6 if Residual forces or kinetic energy norm of the

structure is smaller than threshold then
7 terminate ; /* Static equilibrium

was reached */

8 end
9 end

10 Dt = ξ×Dt ; /* Decreases timestep */

11 end
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Figure 1: Basic beam element and nomenclature.

4. Theoretical background of the method

4.1. Structure representation

Our tool requires as input the structure and a simulation scenario
to be applied. A simulation scenario is intended as a set of bound-
ary conditions, namely restraints to nodes and a set of loads. We
represent the structure as a set of vertices or nodes v j, which are
connected to each other using beam elements.

Each node j is identified by its coordinates Pj in the 3D space
and a normal vector n j. These quantities define the node variables
in the global reference system during the simulation, i.e. 3 trans-
lational and 3 rotational dof. We symbolize the displacements for
node j as X j,x, X j,y, X j,z. The change in rotation is quantified with
respect to the normal vector n j as done in [SOA20]. We use the
symbols n j,x, n j,y to refer to the global x and y components of n j
and X j,nx , X j,ny to denote the displacement of these components.
Lastly, we use n j,r to refer to the rotation around n j. During the
dynamic relaxation algorithm, we keep track of each node’s 6D
displacement, velocity, acceleration, forces, and its mass.

Each element has length Lk and connects two vertices (a,b). The
edge (a,b) represents the axis of the beam, which is equipped with
mechanical properties derived from its material and cross-section.
In our examples, we assume that the whole structure has a uniform
cross-section and material properties; however, diverse properties
may be input per edge. We provide material characteristics through
the Young’s and shear modulus, E and G, respectively. The cross-
section type and size is defined with reference to the local frame
< t1, t2, t3 > in fig. 1. Accordingly, we determine the area A, the
torsion constant J (i.e. for rotations around t1), and the bending
moments of inertia, I2 and I3 (for t2 and t3, respectively).

We initialize the above quantities for the given input shape and
material at step 1 of algorithm 11. Conventionally, t3 is assumed to
be close to the normal of the surface.

4.2. DRM step

Each DRM step can be conceptually sketched as in algorithm 4.
Starting from the current state of the structure (input in algorithm
2), each DRM step computes its displacement after a time-step Dt

(output in algorithm 2). As long as the structure is not in static-
equilibrium, the applied external loads are not balanced out by the
internal forces, thus defining a surplus of forces within the struc-
ture, namely the residual forces (line 1). These residual forces, in
turn, are able to displace the nodes (line 3), altering the kinetic en-
ergy of the structure (line 4).

Algorithm 2: A DRM step.
Input: A structure state
Output: The advanced structure state after a time step

1 Compute the residual forces at each node;
2 Update the nodal masses;
3 Compute the acceleration, velocity and displacement for

each node;
4 Compute the total kinetic energy of the system;

With reference to a generic beam (fig. 1), we adopt subscript a
and b to refer to the start and end node of the element. Additionally,
we use upperscript and lowerscript for element and node quantities
respectively. For referring to quantities in the undeformed state e.g.
initial length we use an overline Lk For each DRM step the residual
force FR, j of the jth node of the structure is defined as the difference
of external FE, j and internal forces FI, j:

FR, j = FE, j −FI, j (1)

Since the external loads are defined for a simulation scenario, the
main task is to compute the internal forces. We derive the internal
forces which arise at its endpoints by differentiating the potential
energy with respect to the endpoints’ dof. The potential energy of
an element k is formulated with respect to the normal vectors na and
nb at its endpoints a and b and to the local frame. As can be seen in
Fig. 1, the element’s local frame < tk

1 , t
k
2 , t

k
3 > is orthonormal and

consists of tk
1 the unit vector connecting the two endpoints, tk

2 the
normalized cross product of t1 and the normal vector of the element
nk, and the normalized cross product of tk

3 = tk
1 × tk

2 .

nk =
na +nb

∥na +nb∥
; t1 =

Pb −Pa

∥Pb −Pa∥
;

t2 =
nk × tk

1
∥nk × tk

1∥
; t3 =

tk
1 × tk

2
∥tk

1 × tk
2∥

Next, we formulate the expressions for computing the internal
potential energy of an element of the structure.

Whenever an element k is deformed, its internal potential energy
Uk

I increases to resist the applied deformation. The total internal
potential energy of the structure is simply the sum of the internal
energies of the structure’s elements:

UI = ∑
k

Uk
I (2)

Element k in our framework can resist an applied deformation in
4 main ways, which generates 4 potential internal energies, namely
elongation or shrinking along the beam axis Uk

A, torsion Uk
T and
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bending on two planes Uk
B2

and Uk
B3

. The sum of these four terms
yields:

Uk
I =Uk

A +Uk
T +Uk

B2 +Uk
3 (3)

In order to formulate the internal energies we first need to de-
fine the element’s stiffness in the 4 main ways of resisting external
loads:

κA =
EA

Lk
, κT =

GJ

Lk
, κB2 =

EI2

Lk
, κB3 =

EI3

Lk
(4)

We formulate the internal potential energies component-wise.
The axial potential energy increases whenever the element’s length
Lk is changed with respect to its initial length Lk:

Uk
A =

κA
2
(Lk −Lk)2, (5)

For formulating the torsion component we use the rotation angles
around the frame vector tk

1 at the two endpoints of the element (fig.
2). Under the assumption of small angles, tk

3 ×n j can be considered
as the local rotation angle at the endpoint node j. From [Kre09] the
rotation angles around tk

1 with respect to the frame of element k are:

θ
k
1, j = tk

1 · (t
k
3 ×n j) = n j · (tk

1 × tk
3) =−tk

2 ·n j (6)

So that the torsion energy can be formulated as:

Uk
T =

κT

2
(θk

1,b −θ
k
1,a)

2 (7)

Similarly the rotation angles around the frame axis tk
2 (fig. 3) are:

θ
k
2, j = tk

2 · (t
k
3 ×n j) = n j · (tk

2 × tk
3) = tk

1 ·n j (8)

and thus the first bending energy is defined as:

UB2 =
κB2

2
(4(θk

2,a)
2 +4θ

k
2,aθ

k
2,b +4(θk

2,b)
2) (9)

For computing the second bending energy we use the rotation
angles θ

k
3,a and θ

k
3,b around the normal vectors na and nb at the

endpoints. As such, similar to the first bending energy the second
bending energy is defined as:

Uk
B3 =

κB3

2
(4(θk

3,a)
2 +4θ

k
3,aθ

k
3,b +4(θk

3,b)
2) (10)

We model the intersections of multiple elements as rigid joints.
Accordingly, the third rotation angle at node a with respect to the
kth element θ

k
3,a = X j,nr needs to be enforced to all incident ele-

ments (fig. 4). For doing that we follow the approach of [SOA20].

In the initial configuration, for each node we chose a reference
element k among all n elements incident to a joint, and compute
the angles φ

k,n
j . Then, the third rotation angle θ

n
3, j at node j for

element k is obtained as follows. First, we project the frame vector
tk
1 onto the plane perpendicular to the normal vector n j in order to

compute the vector f1 (eq. 11). We then compute the deformed state
of element n on the projected plane by rotating it around the normal
vector with an angle φ

k,n
j +θ

k
3, j (eq. 13). Lastly, for computing the

θ1,a

θ1,b

t2
t3

t1

Figure 2: Beam torsion defined from the angles θ1 (about t1) at the
endpoints.

θ2,a

θ2,b

t2

t3
t1

Figure 3: Beam bending 2 defined from the angles θ2 (about t2) at
the endpoints.

angle θ
n
3, j we compute the cross product of tn

1 and f2 and project it
onto the normal vector (eq. 14).

f1 = tk
1 − (tk

1 ·n j)n j (11)

f̂1 =
f1

∥ f1∥
(12)

f2 = f̂1cos(φk,n
j +θ

k
3, j)+(n j × f̂1)sin(φk,n

j +θ
k
3, j) (13)

θ
n
3, j = (tn

1 × f2) ·n j (14)

For nodes which have all their dof constrained we compute the
third rotation angle θ

k
3, j as:

θ
k
3, j = n j · (tk

1 × tk
1) (15)

At this point, the total internal potential energy of the structure
is entirely defined from the frames of its elements (eq. 2). In order
to compute the internal force Fk

I, j,i on a node j with respect to its ith
dof imposed from the deformation of an element k we differentiate

4
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eq. 3 with respect to the node’s ith dof:

Fk
I, j,i =

∂Uk
I, j

∂u j,i
(16)

where u j,i represents the ith dof of node j. To speed up the com-
putation of the internal forces we provide the analytical derivatives
with respect to each dof in the supplementary material of this work.

Lastly, the nodes’ mass (line 2) is required in order to compute
the per-node 6D-vector of residual forces. Since we are only inter-
ested in the static-equilibrium state and not any intermediate state,
the node masses do not need to make physical sense but are solely
used to aid convergence. For this purpose, we use the artificial mass
formulation of [LTDC17]. The translational and rotational masses
mk

t and mk
r of each element are initialized as:

mk
t = 2γ∆t2

ini
EA
Lk mk

r = 8γ∆t2
ini

E(I2 + I3)

(Lk)3 (17)

where γ = 0.8. Note here that the masses do not remain constant
but change as the length of the element changes. The corresponding
node mass M j of node j is simply obtained from adding the masses
of the n incident elements:

M j = ∑
n

mk (18)

where mk is the mass of element k ∈ n. Having computed the resid-
ual force FR, j we compute the acceleration α j, the velocity υ j and
finally the displacement vector X j of node j (step 3 in algorithm 4)
as

α j =
Fres, j,i

M j
(19)

υ j = υ j +α j∆t (20)

X j = X j +υ j∆t (21)

At this point we also update the system’s kinetic energy (step 4 in
algorithm 4) which is used to detect local maxima in the kinetic
energy of the structure (see sec.4.3). Finally, we update for each
node the coordinates Pj, its normal vector n j and its rotation angle
around its normal nr, j using the displacement vector X j = as:

Pj = Pj +X j,xyz (22)

n j,x = n j,x +X j,nx (23)

n j,y = n j,y +X j,ny (24)

n j,r = X j,nr (25)

where Pj and n j denote the initial position and normal vector of
node j.

4.3. Kinetic damping

An essential component of the DRM is the removal of energy in
order to reach converge. We use the so-called kinetic damping as a
way to artificially remove energy from the structure and reach con-
vergence. We bring the structure to its static equilibrium by halting
the movement of the nodes whenever a peak in the kinetic energy
of the structure is detected. A local maximum in the kinetic energy
of the structure corresponds to local minima in the system’s po-
tential energy and, thus, a potential static equilibrium state for the
structure.

θ3,b

θ3,a
t2

t3

t1

Figure 4: Beam bending 3 defined from the angles θ3 (about t3)
at the endpoints. We applied rigid nodes formulation, so multiple
beams that are incident in a node preserve locally the same mutual
angle.

In fig.10, we plot the kinetic energy with respect to the exe-
cuted iterations of the tripod test case presented in sec.5. The or-
ange points in the plot correspond to iterations in which kinetic
damping occurs for removing energy from the system. The colors
on the structure demonstrate how the kinetic energy norm is dis-
tributed over the nodes of the structure. Initially the kinetic energy
rises as a result of applying the defined boundary conditions and a
temporal external force. The structure then gradually converges to
its equilibrium state and the kinetic energy minimums consistently
decrease.

4.4. Implementation details

We have implemented the algorithm presented in this paper in C++
and provided it as an open-source library available on GitHub. In
this section, we give details on the code structure and on the strate-
gies we adopted to accelerate our implementation.

Along with the simulation library core, we provide a demo ap-
plication with which the user can replicate the results presented in
sec.5. We incorporate [Sha*19] for visualizing the structures, the
applied simulation scenarios, and results.

Minimizing computation times is essential to any simulation
tool, and as such, our implementation was done with that goal in
mind. Since the computation of the energy of each element is in-
dependent of the others in each DRM step, we compute the resid-
ual forces of each element in parallel allowing significant speed-
up, especially on more complex structures. In order to minimize
processing times and memory consumption, we cache and pre-
compute the derivatives required for computing eq.1, which is the
most computation-intensive task in each DRM step. Since the inter-
nal force expressions vary depending on the dof to be computed, we
have reformulated the required equations for minimizing the com-
putational cost for each dof. Additionally, we observed that eq.16 is
non-zero only for the dof of the endpoints of element k and the dof
of the non-common endpoint of the reference element of node j.
Therefore, to increase the performance restrict the partial derivative
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calculations the non-zero dof. The reformulated expressions can be
found in the additional material document provided with this paper.

5. Experimental results

Figure 5: Cantilever test case in which we apply a vertical force in
the right end of the beam which is composed of 10 elements leading
to a maximum displacement of 0.35m.

Figure 6: PentaShell side view(bottom row) and top view(bottom
row). We displace the corners of the pentagon towards its center
leaving the rotational dof free (upper left and bottom left) and con-
straining them (upper and bottom right).

Figure 7: Roof test case in which some border nodes are displaced
towards the interior of the structure. The deformed shape reaches
a maximum displacement of 5.7m.

Figure 8: Torus test case in which the outer border vertices are
squeezed towards the interior resulting in a maximum displacement
of 2.4m.

Figure 9: Tripod test case in which we displace towards the inte-
rior some vertices of the structure’s border reaching a maximum
displacement of 7m.

We test our tool against a classic benchmark problem of a can-
tilever beam (fig. 5) and several bending-active structures (figs. 6-
9). For all scenarios, we used a Poisson’s ratio of 0.3 (that is re-
quired to compute the G) and a rectangular cross-section of uniform
dimensions over the whole structure. As a convergence criteria, we
used a threshold of 1e-3 Newtons or a Kinetic energy smaller than
1e-15. Note that for all scenarios besides the cantilever for coping
with bifurcation buckling, we apply an initial vertical force of 1 kN
for the first 1000 DRM steps in order to move the structure out-of-
plane. After this initial distortion, we apply the displacement fields
of those scenarios. The characteristics of all the examples, along
with the required DRM iterations, execution time and error with
respect to commercial FEM software [GD 05] results are included
in tab. 1.

In fig.5-9 we use dark gray and cyan in order to depict the ini-
tial and deformed configurations, respectively. We denote nodes on
which we apply a specific displacement with red spheres.

In fig. 5 we use a unit length cantilever beam composed of 10
elements with a cross-section of 0.015x0.015m2, 1 GPa Young’s
modulus and apply a vertical force on the right end of 5N.

In fig.6 we use a pentagonal surface of size 32x36m2, a Young’s
modulus of 10 GPa and beam cross sections of 0.1x0.1m2. We dis-
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Table 1: Statistics and results on different examples: number of elements |k|, number of nodes | j|, cross section size (m2), Young’s modulus
E, number of iterations to convergence, computation time, maximum displacement Xmax(m), max and mean error(m) computed by comparing
the results to an FEM simulation.

Name |k| | j|
Cross

section(m2)
BBox (m2) E (GPa) Iterations Time(sec) Xmax(m)

Max
Error(m)

Mean
Error(m)

Cantilever 10 11 0.015x0.015 1 1 6171 0.23 0.35 0.00036 0.00019
PentaShell pinned 1146 597 0.1x0.1 32x36 10 39620 35 3.7 0.019 0.0039
PentaShell fixed 1146 597 0.1x0.1 32x36 10 23682 23 4 0.024 0.016
Roof 848 408 0.2x0.2 37x37 200 43380 29 5.7 0.17 0.056
Torus 870 464 0.1x0.1 37x37 10 8952 5 2.4 0.14 0.059
Tripod 828 439 0.25x0.2 37x35 50 21874 14 7 0.021 0.0068
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Figure 10: A plot of the logarithm of the kinetic energy of the scenario in fig.9 on the Tripod structure. The orange points depict the iterations
on which kinetic damping occurs. The color-map of the structure depicts the kinetic energy norm throughout the structure. From step 0 until
1000 a vertical out-of-plane force is applied for coping with bifurcation buckling effects. From step 1000 until 2000 we gradually displace
the boundary nodes towards the interior of the structure. After step 7000 we see a steady decrease of the kinetic energy while the structure is
moving towards its static equilibrium shape.

place the vertices of the pentagon towards its center with a dis-
placement of 0.7 m resulting in a maximum displacement in the de-
formed state of 3.7 m. On the scenario depicted on the top and bot-
tom right images of fig.6, we additionally constrain the rotational
dof of the displaced vertices resulting in a maximum displacement
of 4m. In fig.7 we present a simulation scenario applied to a roof-
like structure of bounding box size 37x37m2, a Young’s modulus
of 200 GPa, a cross-section of 0.2x0.2m2. We apply a displace of
some border nodes towards the interior with a displacement of 3%

of their distance from the center of the structure. The maximum
displacement we get as a result is 5.7m.

In fig.8 we deform a circular surface with a hole in its center
of size 32x36m2, with elements of cross-section 0.1x0.1m2 and a
Young’s modulus of 10 GPa by squeezing the outer border vertices
towards the interior with a displacement of close to 3% of the sur-
face’s diameter in the initial state, reaching a maximum displace-
ment in the deformed state of 2.4m. In fig.9 we deform a tripod
surface of size 37x35m2, elements of cross-section 0.25x0.2m2,
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where 0.25 corresponds to the in-plane dimension and a Young’s
modulus of 50GPa. We displace the border vertices laying on the
"non-curved sides" towards the interior, reaching a maximum dis-
placement in the deformed state of 7m.

The timings for the computation of the FEM results are 3 (can-
tilever), 27 (PentaShell pinned), 66 (PentaShell fixed), 39 (Roof),
18 (Torus) and 18 (Tripod) seconds as computed on a Intel(R)
Core(TM) i9-9980HK CPU @ 2.40GHz machine. The DRM re-
sults presented in this section were computed using an Intel(R)
Core(TM) i7-9750H @ 2.6GHz CPU. Even though we did not use
a high-end processor for performing the tests in this work, the per-
formance is significant, with an average processing time for the per-
formed cases, excluding the cantilever, of less than 1.5 microsec-
onds per iteration and per node allowing the use of our tool on
personal computers.

6. Conclusion

In this paper, we presented a simulation model based on the dy-
namic relaxation method for analyzing bending-active structures.
The presented model is based on the computation of internal forces
of the structure using the per-vertex global normals for defining
per-element local frames. We discussed and provided a novel open-
source implementation of our tool along with the theoretical back-
ground. We have tested the accuracy and performance of our com-
putational tool on several real-world architectural structures com-
posed of beam elements with various material and cross-section
properties targeting a wide range of displacements. We assessed the
accuracy of our tool, comparing the results to an accurate ground
truth FEM model. Our tool demonstrates both accuracy and high
performance with low computation times, even on low-end per-
sonal computers.

Although we demonstrated that our tool can be used on bending-
active structures for solving static-equilibrium problems, the DRM
has several parameters which determine both its stability and con-
vergence time making its use less intuitive to the non-expert user.
Additionally, since the discussed simulation model does not con-
sider shear forces in the elements’ cross-section of the elements, its
accuracy diminishes when these forces become relevant.
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