Interactive and Robust
Mesh Booleans

Gianmarco Cherchi (University of Cagliari, Italy)
Fabio Pellacini (Sapienza University Rome, Italy)
Marco Attene (CNR-IMATI Genoa, Italy)
Marco Livesu (CNR-IMATI, Genoa, Italy)

Mesh Booleans

(complex to implement

(conceptually simple J correctly J

sa2022.siggraph.org

http://sa2022.siggraph.org

Mesh Booleans algorithms

floating points VS exact arithmetic volume-based vs surface-based exact results vs approx. results

o B8 E B NN N N N A A R RN A R A A A A A A A B R R A A A A A A R A 8B R A A A A A R R A A A A A A R R A N A A A A A SN R A R A A A A A A 8B A e A A A A R A R A A A A A A A A S R R A A A NSNS SRS RS EEEESEEEEEEEEEERSERRSERE R

C fast B} (slow B easier I/0 IabelingJCmore convoluted) Cexact result (needs repairing |

@Ossible errors C exact) (less efficient JGnore performanU @Ore convolutedJ @sierimplementJ

Gg,eometric predicates.J Gnap roundingJ Gnap roundingJ

Csnap roundin@

http://sa2022.siggraph.org

Robust and interactive Booleans
with EMBER

fastest Boolean pipeline J

EMBER: Exact Mesh Booleans via Efficient & Robust Local Arrangements
Trettner P., Nehring-Wirxel J., Kobbelt L.
ACM TOG 2022

sa2022.siggraph.org

http://sa2022.siggraph.org

Robust and interactive Booleans
with EMBER

no compatibility with existing |
geometry processing tasks J

example:
QuadMixer
[Nuvoli et al. 2019]

EMBER: Exact Mesh Booleans via Efficient & Robust Local Arrangements
Trettner P., Nehring-Wirxel J., Kobbelt L.
ACM TOG 2022

sa2022.siggraph.org

http://sa2022.siggraph.org

Robust and interactive Booleans
with EMBER

unnecessary stitchingin
the result mesh J

A A\B

EMBER: Exact Mesh Booleans via Efficient & Robust Local Arrangements
Trettner P., Nehring-Wirxel J., Kobbelt L.
ACM TOG 2022

sa2022.siggraph.org

http://sa2022.siggraph.org

Robust and interactive Booleans
with EMBER

EMBER: Exact Mesh Booleans via Efficient &

Robust Local Arrangements

Trettner P., Nehring-Wirxel J., Kobbelt L.

ACM TOG 2022

(: speed

|

compatibility with

existing geometry |

processing tasks

)

VS

Interactive and Robust Mesh Booleans
Cherchi G., Pellacini F., Attene M., Livesu M.

Gossible slowdowru

compatibility with
existing geometry |
processing tasksj

(differentgoaIsJ

sa2022.siggraph.org

ACM TOG 2022

[OURS]

http://sa2022.siggraph.org

The general pipeline

B

input .
meshes

AUB = {Al,Bz}

Ay A, B,

. resolve mesh intersections and Bl
. create conforming patches

...

ANB = {AZIBl}

filter and merge patches
to form the output mesh

Ay

is inside B

is inside A
|n5|de/out5|de
. patch labelling :

B\A — {AZJ BZ}

http://sa2022.siggraph.org

Our main contributions

[one order of
exact magnitude faster
robustness of fast inside/outside compatible with
exact floating —I— triangle — < existing floating
point methods classification point algorithms
speedup —-
> 5X interactive up to
150K triangles on
[Cherchi et al. 2020] L commodity laptop

sa2022.siggraph.org

http://sa2022.siggraph.org

Our Booleans pipeline

sa2022.siggraph.org

http://sa2022.siggraph.org

Intersection resolution

..

(Eached predicates]

Fast and Robust Mesh Arrangements -
using Floating-points Arithmetic _I_ (Segme nt insertiorD

Cherchi G., Livesu M., Scateni R., Attene M.
ACM TOG 2020

implementation
Improvements

sa2022.siggraph.org

http://sa2022.siggraph.org

Cached predicates

Given a point p and a plane defined by 3 points (a, b, ¢) the orientation of p w.r.t. the
plane is given by the sign of:

4x4 determinant for
exact and robust . .‘
J each orient3D call J

[Shewchuk 1997] A A S
P L pre computed and cached verS|on --------------------------
; |

for each orient3D call J

sa2022.siggraph.org

(exact and robust | (single scalar product in 4D

http://sa2022.siggraph.org

egment insertion and

low-level implementation

Transacions on Visszation snd Computer Graphics

Deterministic Linear Time Constrained
Triangulation using Simplified Earcut

Marco Livesu, Gianmarco Cherchi, Riccardo Scateni, Marco Attene

Abstract—Triangulation algorithms that conform o a set of

pr 3

by inserting points first, and then segments. Inserting a segment amounts to: (1) deleting al the triangles It intersects; (2 filing the so

generated hole with two polygons that have the wanted segment as shared edge; (3) rianguiate each polygon separately. In this paper
we prove that these polygons are such that alltheir convex vertices but two can be used to form triangles in an earcut fashion, without the
need to check whether other polygon points are located within each ear. The fact that any simple polygon contains at least three convex:

a valid ear to cut,

Not only this translates to an optimal deterministic finear

time triangulation algorithm, but such algorithm is also trivial to implement, We formally prove the correctness of our approach, also

validating tin practical applications and comparing it with prior art,

Index Terms—constrained triangulation, tessellation, segment nsertion, earcut, CDT

+

-

INTRODUCTION

The generation of triangulations that conform to a given
set of line segments is at the basis of many tools in scientific
computing (1], [2). A typical approach to the construction of
a constrained triangulation consists in computing a generic
triangulation of all the segment endpoints, and then incorpo-
rate the segments. Adding a segment connecting two vertices
of a previously existing triangulation requires to perform two
operations: (i) detect and remove all the triangles that are
intersected by the segment; (i fll the so generated poygonal
pocket, triangulating two sub-polygons that have the wanted
segment as shared basis (Figure 1). In this short paper we
focus our attention on this latter operation, sheding some
new light on this classical computational geometry problem,
and ultimately proposing a simple yet computationally
optimal solution that has been surprisingly overlooked until
now.

Our main intuition is that all the polygons that arise
in the context of segment insertion belong to a restricted
class of simple polygons which cannot contain severe
(curl-like) concavities. We exploit this property to devise
a straightforward triangulation algorithm that proceeds in
an earcut fashion [3], forming triangles by cutting one ear
at a time. We were able to prove that for any polygon in
our class of interest all the convex vertices but two form
valid ears which do not contain any other vertex inside,
hence can be used to form triangles right away. We also
prove that any such polygon contains at least three convex
vertices, thus guaranteeing convergence. Putting all these
ingredients together yields a triangulation algorithm which
is a simplified version of the classical earcut, from which
we omitted any point-in-triangle test. This simplification not
only makes the algorithm even simpler to implement, but it
also makes it run in deterministic linear time, on par with the
best known triangulation algorithm [4] which, conversely, is
extremely difficult to implement.

Our linearized earcut method advances the state of the
artin the field, which comprised either optimal algorithms
that were complex to implement, or algorithms that were
easier to implement (though still less easy than earcut) but

had sub optimal asymptotic complexity (Section|2).

In Section[3/we describe the basis of the classical earcut
algorithm, which has O(n?) complexity. In Section 4 we
introduce our simplified version, demonstrating that it runs
in deterministic linear time and also proving its correctness
in Section [5] In Section [] we report on numerical tests
we performed on our method, also comparing with the
most recently published method in the field, proposed by
Shewchuk and Brown in [5).

2 PRIOR WORKS

Finding efficient methods to triangulate a polygon has been a
foremost problem in computational geometry and computer
graphics since decades. Before 1978 no efficient methods
were known, and the only approach to triangulation was
brute force. Brute force methods ~ of which earcut [3] is
a popular representative — are very easy to implement,
but at the same time they are inefficient, and can only
achieve O(n?) complexity. The first attempt to efficiently
triangulate a polygon occurred in 1978 (6], and the proposed
algorithm had O(nlogn) time complexity. For a certain
period it was thought that triangulation was a problem as
hard as sorting, and no better algorithms could be devised.
Asano et al. [7] showed that this bound is optimal for
polygons with holes, but does not apply to simple polygons
Fournier and Montuno showed that the decomposition of a
simple polygon into trapezoidal elements (trapezoidation) is
equivalent to triangulation, and that each trapezoid could be
triangulated in O(n) [8]. At that time the best trapezoidation
algorithm had O(n log n) complexity, which was therefore
also a bound for triangulation. In the subsequent years
various researchers focused their attention to trapezoidation
as a mean to improve tiangulation, until in 1988 Tarjan
and Van Wyk [9] showed that a trapezoidation (hence a
triangulation) could be obtained in O(n loglogn). In their
paper, Tarjan and Van Wyk open about the possibility to
achieve linear complexity in the near future, and in 1991
Chazelle proposed a deterministic linear time algorithm [4]

classic Earcu

0(n?)

inear Earcu

0(n)

n = number of

polygon segments

specialized data structures

and
massive parallelization

Deterministic Linear Time Constrained
Triangulation using Simple Earcut
Livesu M., Cherchi G., Scateni R., Attene M.
IEEE TVGC 2021

sa2022.siggraph.org

http://sa2022.siggraph.org

Inside/outside classification via ray casting

For each patch of the simplicial complex we determine its position w.r.t. the input
meshes M, ...Mn

(jefficient ray castingj

(jscales on patches Do

\l

(not on triangles) J

negligible comp.
time J

sa2022.siggraph.org

http://sa2022.siggraph.org

Inside/outside classification via ray casting

This ray casting approach poses several technical challenges:
exact arrangements XaCt |ntersect|0ns
required detection required r
manage implicit manage ambiguous
points ray intersections

sa2022.siggraph.org

http://sa2022.siggraph.org

Intersection classification

vol neg. : inside — outside

vol pos. : outside — inside

general case:
check triangle orientation

sa2022.siggraph.org

http://sa2022.siggraph.org

Intersection classification

particular case:

perturb ray by € and go
to the general case

general case:
check triangle orientation

sa2022.siggraph.org

http://sa2022.siggraph.org

Discussion and results

sa2022.siggraph.org

http://sa2022.siggraph.org

Implementation and comparisons

- Exact ray casting and exact intersection check: Indirect Predicates [Attene 2020]

- Efficiency and parallelism: Google Abseil + Intel TBB

Mesh Arrangements for Solid Geometry
Zhou Q., Grinspun E., Zorin D., Jacobson A.
ACM TOG 2016

most recent version in libigl
[Jacobson et al. 2018]

sa2022.siggraph.org

http://sa2022.siggraph.org

Interactive applications: rotation demo

Apple M1 PRO
8 performance cores
32 GB Ram

ours: interactive up to 150K tris
libigl: 1-2 fps already at 50K tris

ours: 1-2 fps for 1M tris

sa2022.siggraph.org

http://sa2022.siggraph.org

Interactive applications: ARAP
deformation

Apple M1 PRO
8 performance cores
32 GB Ram

ARAP [Sorkine and Alexa 2007]

(Tteractive up to 100K trig

sa2022.siggraph.org

http://sa2022.siggraph.org

Large scale benchmark

Boolean step

5.8 mins

Thingi10K cleaning 7628 clean meshes _
[Zhou and Jacobson 2016] > 2 x 3814 meshes '”“*1'2'9c(1)-r2ef'42
128 GB Ram

ours: 3814 Booleans in 4.5 minutes

libigl: 3814 Booleans in 28.3 minutes

Boolean step

0.47 mins
splitting step (12.2X libigl) splitting step
22.5 mins ¢)
4 mins
libigl olre (5.5 libigl)
tot: 28.3 mins . tot: 4.5 mins

we are fasterin
100% of the casesj

sa2022.siggraph.org

http://sa2022.siggraph.org

Processing of huge meshes

i 4 M tris 4.3 M tris 14 M tris
1.3 Mtris 2.2 M tris

2.2 M tris

2 Mtris 7.2 M tris

[i9 1.
ours: from 2.29 to 19.5 seconds T o

128 GB Ram
libigl: from 27.33 to 545.2 seconds

: we are up to 80x | rWe are on average 25x
faster than libigl * faster than libigl ~*
Lin the Boolean part J Lin the whole pipelinej

sa2022.siggraph.org

http://sa2022.siggraph.org

Variadic Booleans

Apple M1 PRO
: : : = E 8 performance cores
32 GB Ram

A\B

A\{B{U--UBn}
ours: 7.59 seconds
libigl: 170.93 seconds

ours: 7.49 seconds
libigl: 61.01 seconds

B is a single mesh B ={B;UB; U U Bgy}
composed of 500 conn. components B is composed of 500 meshes

sa2022.siggraph.org

http://sa2022.siggraph.org

Final remarks

sa2022.siggraph.org

http://sa2022.siggraph.org

Conclusion

g —
|mprovedmesh i (} ne or dﬁr of magm];tu de
- arrangements . raytracing aster than state of art
N < interactive mesh
| — Booleans

Cherchi et al. 2020] i ga i i
[Cherchi et a basic geometric algorithms

+
real-time Booleans

\.

sa2022.siggraph.org

http://sa2022.siggraph.org

Limitations and future works

Our system is current limited in two aspects:

inability to achieve interactive

frame rates on very high

resolution meshes

inability to robustly perform

cascaded Booleans operations

smarter update of the data
structures for intersections,

ray casting and adjacencies

cascaded version of the
Indirect Predicates of
[Attene 2020]

sa2022.siggraph.org

http://sa2022.siggraph.org

http://sa2022.siggraph.org

